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Uq[sl(/z\ll)] vertex operators, screen currents,
and correlation functions at an arbitrary level

Yao-Zhong Zhang® and Mark D. Gould
Department of Mathematics, University of Queensland,
Brisbane, Queensland 4072, Australia

(Received 23 November 1999; accepted for publication 23 February) 2000

Bosonizedy-vertex operators related to the four-dimensional evaluation modules of
the quantum affine superalgehﬂ@l[sl(/2\|1)] are constructed for arbitrary levkl

=a, Wherea#0,—1 is a complex parameter appearing in the four-dimensional
evaluation representations. They are intertwiners among the deliglhest weight
Fock—Wakimoto modules. Screen currents which commute with the action of

Uq[sl(/2\|1)] up to total differences are presented. Integral formulasNuoint
functions of type | and type I4-vertex operators are proposed. ZD0O0 American
Institute of Physics.S0022-2488)0)00608-3

[. INTRODUCTION

The notion ofg-vertex operators as certain intertwiners of highest weight modules of quantum
affine algebras was introduced by Frenkel and Reshetikhitheir work on theg-deformation of
the Wess—Zumino—Novikov—Witten model. Thepeertex operators give rise tpanalogs of the
primary fields in conformal field theory.

Similar to the classical casg;vertex operators are characterized by the intertwining property
defined from the relevant quantum affine algebras. However it is nontrivial to obtain explicit
expressions of them. A powerful tool for constructing such explicit formulas is the bosonization
technique?~“initiated by Wakimotd in the theory of affine Lie algebras. This method enables one
in principle to determineay-vertex operators in terms of certain free bosonic fields. So far, level-
one bosonized-vertex operators have been constructed for most quantum affine afjélmag
the type | quantum affine superalgebtﬁﬁsl(WN)],M #N (Ref. 9 anqu[gI(N\lN)].lo’”In
the case of arbitrary level, bosonized formulas have been known only for the tgpeertex
operators qu[sI/(\Z)] (Refs. 12—-1pand Uq[sl/(N)].4

One of the central issues in conformal field theory and massive integrable models is the
computation of correlation functions, which are matrix elements of certain products of vertex
operators. The explicit bosonized expressions of vertex operators play an essential role. They
enable one to compute correlators exactly in the form of integral representations. This was dem-
onstrated by the Kyoto group and collaborators in their groundbreaking work on the diagonaliza-
tion of the XXZ spin chaint®!’In Refs. 6, 18, 19, certain correlation functions of other quantum
affine (supejalgebras at level one were computed via the bosonization procedure, generalizing the
work of the Kyoto group and collaborators.

The case of the arbitrary level is more complicated. Due to the existence of nontrivial back-
ground charges, the naive solutions to the intertwining relations in terms of free bosonic fields do
not give rise to proper bosonizations of tyertex operators, which ensure the nonvanishing of
correlation functions. As in conformal field theorg;screen currents which balance the back-
ground charges are generally needed. Sgdlereen currents are dimension 1 operators which
(anti-)commute with the relevant quantum algebra generators up to total differences. Bosonized

g-screen currents have been obtainedUgfsI(N)] (Refs. 12—15, % and been applied to com-
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pute the correlation functions of the typeUlq[sI/(E)] vertex operatord?—1°

In this paper, by using the free field realization log[sl(/2\|l)] at an arbitrary levek#0,
—1 (Ref. 20 we investigate the bosonization @fvertex operators related to the four-dimensional

evaluation modules dﬂq[sl(/2\|1)]. It is worth mentioning that our four-dimensional representa-
tion contains an extra complex parameiet 0,— 1. For arbitrary levek= «, the g-vertex opera-
tors are mappings of certain highest weight Fock—Wakimoto modules in a bosonic Fock space.

Screen currents whicfanti-)commute with the action dﬂq[sl(/2\|1)] are obtained and bosonized
g-vertex operators dressed with the screen charges are proposed. This provides a natural way to
write down an integral representation for correlation functions of the bosogizedtex operators.

The results obtained in this paper will be useful in analyzing the supersymmetric integrable
model introduced in Ref. 21. This is a quantum spin chain model arising frofR-thatrix for the

four-dimensionaIUq[sl(/2\|1)] evaluation representation and can be interpreted as a model de-
scribing strongly correlated electrons.

II. PRELIMINARIES

A. Quantum affine superalgebra Uq[sl(lz\ll)]
The simple roots of the affine superalgelsﬂe/z\|l (Ref. 22 are

ag=0—¢e1t 01, ai—€1— &y, ar=gys— 01,

where § is the null root andeq,e5,8,} are orthonormal basis satisfying
(8,8)=(8,81)=(8,61)=(81,8:)=0, =12,

(ei,e))=6jj, (61,6)=—1.
The fundamental weights are
ANg, Ai=Ag—er+61, Ay=Ag—e1—e,+26,

where A is the affine weight obeyingXy,Aq)=(Ag,&;)=0,i=1,2 and Ay,6)=1. The sym-
metric Cartan matrixd;;) of the affine Lie superalgebrsl(2|1) has elements;; = (a; ,a)),i,]
=0,1,2. Explicitly,

0 -1 1
(@)= -1 2 -1
1 -1 0

AQuantum affine superalgemaq[sl(/ﬂl)] is ag-analog of the universal enveloping algebra of
sl(2|1) generated by the Chevalley generat@s f; .M. dfi =0,1,2}, whered is the usual deri-
vation operator. Th&,-grading of the generators arey|=[fy]=[e,]=[f,]=1 and zero other-
wise. The defining relations

hihj=hjh;, hid=dh;, [d,e]=6 e, [dfi]l=—23f,
qhi-q "
qhiejq—hi:qaijej, qhiqu—hi:q—aijfj, [ei'fj]zgijW’
[ei.e]=[f;,f;]=0, for a;=0,
(1.1)
[el,[el,e|]q—1]q=0, [fl.[fl,ﬂ]qfl]q:O, 1=0,2,
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[eo.[€2.[€0.[€2.€1]q]1]q=[€2.[€0.[€2.[€0,€1]4]]]q
[fo.[f2.[fo.[f2.F1lq]l]q=F2.[Fo.[f2.[F0.F1lq]]]q-

Here and throughoufX,Y],=XY— (- DXIYIgy X and[ X, Y]=[X,Y];.
q[sl(2| 1)] is a quasitriangular Hopf superalgebra endowed wittZiiigraded Hopf algebra
structure,

A(h)=h®l1+1®h;, A(d)=d®l+1xd,
Ale)=e21+qi®e, A(f)=fioq N+1af;,
(1.2)
e(h))=e(d)=€(e)=€(f))=0,
S(e)=-q Me, S(f)=-fig" Sh)=-h;, S(d)=-d.

Note the antipodsis aZ,-graded algebra anti-automorphism. Namely for homogeneous elements
abe Uq[sl(2|1)] S(ab)=(—1)?IPIg(b)S(a). The multiplication rule for the tensor product is

Z, graded and is defined for homogeneous elemenisa’ b’qu[sI(2|1)] by (a®b)(a’

@b’ ) (— 1)“’][a l(aa’®bb’), which extends to inhomogeneous elements through linearity.

[sI(2|1)] can also be realized by the Drinfeld genenazt%n{::)(+I h .q ho, ¢ ,Jdli=1,2m
e”Z, neZ;tO} The Z,-grading of the Drinfeld generators &, 1=1(me Z) and zero other-
wise. The relations re&ti?®

c: central element,
[hy,hi]1=0, [d,hj]=0, [d,h]=mH,

o [a;m] [ nc]
[N AL]= Sining——

o"oXiq o= =Xt [d, X 1= mXG,

. . a:m .
T
(1.3)
[xil X J]_ 5 _ (q(m n)clzlp q—(m—n)clzlp;ﬁin)’
[X~? X>?]=0,
[Xmid 1 Xn 1 qzay +[Xn i1 X' Tgza, =0, for a;;#0,
[Xa Xt X Zlg-tlg+ (N np) =0,
where[m],=(q™—q ™/(q—q ') andy, ' are defined by

PINTN: ”—q*“'oexp(i(q—ql)go hi.,z™"

The Chevalley generators are related to the Drinfeld generators by the formulas,
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hi=hh, e=XJ"', hy=c—hi—h3, fi=X;", i=1.2,
(11.4)
—xo2 XL —hg=hy  f = ghotharx il X2
€o [ 0 /M1 ]q*lq ’ 0—d [ —11M0 ]q-
B. Bosonization of Uq[sl(/2\|1)] at an arbitrary level k
In this subsection we briefly recall the free boson realizatiomgﬁsl(f2\|1)] at an arbitrary

level k.2 Let us introduce the bosonig-oscillators{a},a2,b,c,,Qa1,Qqa2,Qpii,Qc/n e Z,1<i
<j=3} which satisfy the commutation relations

[ajjm]q[ (k+1)m]q

[}, al]= Sming . [ah,Qul=(k+Da;,

m
ij wi'j’ 8o sil’ sij’ [m]é ij Sip 51" sii’
[bm,by! 1=(=1)%28" & Snino o0 [bo . Quinir]=(=1)%28" &7, (1.5)
[m];
[Cmrcn]:5m+n,OTi [C0,Qc]=1.

The remaining commutators vanish. Here and througkeu®,— 1 is a complex parameter. For
any pair @,,Q,), we define

a
a(z,k)=— 2, ——q "Mz "+Q,+aginz
n#0 [n]q

(11.6)

a.(2)= i(q—q*)go a.,z" "*agInq.

We have .
Theorem 1 (Ref. 20: Define the fields X'(z) by

X*l(z)= > Xy'z7 "L

nez

Then at arbitrary IevelkiO,—l,Uq[sI(/Z\|1)] is realized by the free boson fields as follows:
c=k, hg=ag+2bz*+bg’~b3°, hi=ag—bs’—bg’,
hrln: arlnq—(\m\/z)_}_ blzq—((k/2)+1)\m\(q\m\ + q—|m|) _ brlnsq—((k/z)+2)\m\ _ bﬁq3q—((k/2)+1)\m\,

m

2 2 - 12— 13—
h2 = a2q~ (Iml12) _ p12g = (2 + 1)jml _ p13q - (k2)+ ]

L . blz(z;—l)(e—c(qz;O) _ e—c(q‘lz;O)):er——lw(cw béz),

+,1 -_ -
X D=~ =g 2

12 13 . 12, 13, , 2 . . .
X*+2(z)= — e b¥102-b3%a2 +b7%az0). o= Tm(co+ g+ by b5 4+ @™ Az:0) +0™Z0) +0(z:0).
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1
X~ (z)= — (eai(q[(kJrl)/Z]z)_'_blz(qk+22;l)+b£3(qk+22)_bi3(qk+lz)+c(qk+lz;0)
(q-9 )z
(A CRRCE R C R B U R C e U
—T 12 1 13/ jk+1,,. 23 (k+1,. T x(b3+ p?
= ) - : =
e~ VTIm(co+hy) 4 gkt 1 gay ([(k+ 1)/2]2) ~b ™A z0) +b™a* 1z - 1), g Tm(bg>+b3d)
1 - k-
xiyz(z):—1(q:(eai(q[(k-#l)lZ]Z)7b23(qk+1z;0)_ea%(q [(k+1)12]5) _p23q~k 12;0)):
(a—q ")z

e V" Im(cotby b b5 _ . ga” (q (K DRlz) —plaq k1z1) - pt¥q K 1z1)

X (g0 %0 _g=e(a™ " ?z0)).y (1.7)

Ill. LEVEL-ZERO REPRESENTATIONS

We discuss level-zero representationslgl{sl(/ﬂl)], which are needed in next section for
the investigation ofj-vertex operators.
LetV, is the one parameter family of the four-dimensional typical irreducible representation

of Uq[sl(/2\|1)]. Here and throughouty#0,—1 is a complex parameter. We choose the basis
vectors{vq,v,,v3,04} Of V, and assign them th#, gradinggv,]=[v4]=0,[v,]=[v3]=1. Let

e;; be the 4<4 matrices satisfyingej;) = 6 d; . In the homogeneous gradation, the evaluation
representatiotV,, , of Uq[sl(/2\|1)] is given by

€1=€3, fi=ez, hi=eyp—ess,

e2: \ [a]qelz+ \/[a-l- 1]q834,
f2: \ [a]q821+ \/[a-l- 1]qe43,

h2=a(ell+ez)+(a+ 1)(833"1‘844), (“Il)

€=—2(— \/[a]qe31+ \/[a+ 1]qe42).

fo=z 1 (—V[alqest Va+1]4e2),
ho= —a(ey +esz) —(a+1)(exntes).

We define the dual modul&’ii of V,, by WV*i(a)ZWVa Z(S(a))s't, Vae Uq[sl(/2\|1)],
where st is the supertransposition operation.\Qgi, the Chevalley generators are represented by

e1=—0q 'exp, fi=—0ey, hi=—exptes,
ezzqiam%l_qirlme%,
fo= —q“\/@elz-i— qa+lmes4'
hy=—a(ey +ex) —(a+1)(eszteq), (n.2)
eo=—2(q*\[aleerst q* V[ a+1]qe2),
fo= _Z_l(q_a\/a_]qe31+ q_a_lmeztz)-

ho= (€11t e33) +(a+1)(exptey).
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We state
Proposition 1: The Drinfeld generators are represented o, \by

1 2
ho=ex—es33, hg=a(eptey +(atl)(esstes),

Xo= (20 ) Megs,  Xop'= (2" Meg,
X ?=(zq" H™(q ™[ alqernt a™V[a+1]ess),
Xi?=(zq* (g ™[ elgent a™[a+1]€s),

(11.3)

[m]g
h#\: (anﬂ)mTq(q Mey—qMess),

m

2= ([am]q(es+ ez + Qe+ Dmlg(east ega),

and on \}. by
hg=—estess, hi=—a(e;tey) —(a+1)(exteq),

X:Tr],lz _qu—ma—m—lesz, Xr;l,l: _qu—ma—m+1823,

Xih2=2zmgq~ (A me( Vlalqez1— S 1]¢€43),
X 2= zmg(t-me( — /[a]q912+ q 2™ [a+1]ess,

(I11.4)

a1 mlM] -
hm=—(zq )™= (q"e;— 0 "esy),

m

hi=— %([am]q(elﬁ' €9 +q "[(e+1)m]g(e3st€ss)).

IV. VERTEX OPERATORS AT AN ARBITRARY LEVEL k=«

Let V(N\) be a levelk highest Weigth[sI(/2\|1)]—moduIe with highest weight and highest
weight vector|\). Consider the following intertwiners dﬂq[sl(2|1)]-modules,

PLV(2) VN = V(m)@V,,, PV (2):V(N)—=V(n)eVES,
(IV.1)
VVH(2) : V(N =V, 0V (), VY “(2):V(N)—=VESeV(u).
They are intertwiners in the sense that for anyU[sl(2[1)],
(IV.2)

0(2)-x=A(x)-0(2), O(2)=D(2),®*(2),V(2),¥*(2).

The intertwiners are even operators, that is their gradingi&z)]=0. ®(z)(d*(z)) is called
type | (dual) vertex operator an®¥ (z) (\WV*(z)) type Il (dual vertex operator.
Expand these vertex operators in terms of their components,

4 4
D(z)= Zl d (2)®@v,, D*(z)= Zl O ()00, (IV.3)
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4 4
V(2)=2 v,0V¥,(2), V*(2)=2 vieV¥;(2), (IV.4)
r=1 r=1

wherev, eV, andv?¥ € VXS, Then we have

Proposition 2: The operators(z) and W(z) with respect to {,, are determined by the
componentsb,(z) and ¥ ,(z), respectively. More explicitly

1
Dj(z)=— \/ﬁ[qh(z),fz]q*a*l,

1

Dy(2)=[P3(2),f1]q, P1(2)= \/;[qDZ(Z),fz]q*a,

(IV.5)
1
V,(2)= \/_E[q’l(z),ez]qm V3(2)=[V2(2),61]q,

1
Vy(2)= \/ﬁ[q’s(z)yez]qwl-

With respect to ‘ﬁ the operators®*(z) and ¥*(z) are determined byb} (z) and ¥} (2),
respectively

3 (2)= qﬁ[@{(z),fz]qa, ®3(2)=—q [P3(2),f1]q,

q—a—l
D} (2)= - ——=[P3(2),f2]ga+1,

va+1

at+l

\/m[lpz (Z)veZ]q’a*L

(IV.6)

Vi(2)=-

VE(2)=—q[VE(2).e1)y, VE(2)= q—@[w;a),eﬂqa.

Next we determine the relations between the compon®;(z),P7 (2),V,(2z), ¥} (z) and
the Drinfeld generators. We have

Proposition 3: Ford(z) associated with Y ,,
[D4(2), X" (W)]=0, =12,

oD 4(2)q Mo=q (@ Ve ,(2),
(IV.7)

[(a+1)n]q

[}, @4(2)]= = 3ipq /200" Z'04(2),

[(a+D)n]q__,
—z
n

[h' ,,@4(2)]=—,q (1+1/2kn D4(2);

for ®*(z) associated with {3,
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[®7(2), X" (w)]=0, i=12,

qod (2)g o= (2),
(IV.8)

[an

- ]
[, @1 (2)]= 8,0 ¥ =207 (2),

[a

[h.,.@F(2)]= 80 H/2K—— n]q 2 "3 (2);

for ¥(z) associated with Y/,
[¥,(2),X " (w)]=0, i=12,

qow 4 (z)q~Mo=q~ *i2wy(2),
(IV.9)

[h‘n,%(z)]:—aiqu’””[“n” 2,

[hl ¥ 1(2)]:_5i2q73/2kn[ Nl 27"V (2);

and for ¥*(z) associated with ‘@Zi

[Wi(2),X '(w)]=0, i=12,

oMW} (2)g Mo=q P (2),
(IV.10)
[(a+1)n

- : ]
[hh W3 (2)]= 6,024 =2 (),

[(a+1)n]q Z_n\P*(Z)'
4 )

[h., W5 (2)]= 8,032k n——

To obtain bosonized expressions of the intertwining operators, we introduce the combinations
of bosonic oscillators fome Z,

—|lal+—"

[2m]q 2) /2
[ ]q q ’

[am]q ( [zm]q a2
T mlg

B =

_ |m\/2
m " [(at1)m], m/9

[2m]q ,

E:{n:_(arj;’]—'— [m]q as, q—‘m‘/2+(b%’?_i_q—|m|br2n3)q—(a/2)|m|’

[am]g
[(a+1)m],

[2m]q

“Imliz_ (glmip13.4 h23) g (3al2)m] V.11
[m]q m/4 ( h R

cx
AL=— ar+——

Qar=—Qu=2Quz, Qe =~ —7(Qui+2Qu0),
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Qi+ =—0Qa1—2Q,2+ Qpizt+ Qpzs,

Qar=— % (Qa1+2Q42) — Qp1a— Qpzs.

For k= «, these operators obey the commutation relations, among others,

[mlg{(a+Dmly -

[Aavhirl]:5i25m+n,0 m = A*mvhin]v
(IV.12)
. [Mm]g[am] - .
[BE,hi1=8128ming——— =[Bf,h,].

Then
Theorem 2: For k= «, the bosonized form&,(z), ¢7(z), ¢¥1(z), and ¢} (z) of the vertex
operator component® 4(z), ®7(z), ¥1(z), and ¥} (z) are given by

ba(2)= e~ A* (@M iz (a2),

@* (z)=:eB" Az (a2)
E (IV.13)
Wy (2)=e B (a2 (al2),

—_— o
Pk (z)=1eM"d 12:(a12). g = Ta(b3+ )

The other component$,(2), &7 (z), ¢,(z), and ¢ (z) are represented by multiple contour
integrals of the Drinfeld currents (cf. Proposition.2)
Vertex operatorglV.13) are referred to as “elementaxyvertex operators” and are deter-

mined solely from their commutation relations with the bosonilzlgfﬂsl(/z\|1)] generators. The
construction is completely independent of which infinite dimensional modules the vertex operators
intertwine. In next section, we shall clarify on which space these bosonized vertex operators act.

V. FOCK SPACE AND FOCK-WAKIMOTO MODULES

In this section we study bosonic Fock space on whichl]ifa@sl(/z\ll)] generators and the
bosonized vertex operators act. As we will see, all highest weight modulég/ef(2]1)] can be
embedded in the bosonic Fock space. Note kvatr#0,— 1.

Let |0) be the vacuum vector, which is defined &0 )=b!40)=b0)=b20)=c,|0)
=0 for n=0. Introduce the vector

|)\a11)\a2! 7\b12, 7\b13, 7\b23, )\c> — e[l/(a+ 1)INa1Qa1+[2/(a+ 1) INg2Q42+ N p12Qp12+ N 13Qp13+ N ,23Qp23+ )\ch| O>,
V.1
which carries the weight\u1/(a+1),2\ 2/ (a+ 1),\p12, A p13, A p23, A ) € C®. Denote by

Flua+ 1) n[200a+ DN 2 h gz sk p2a,

the module generated by the creation operagdrsaZ, bl?, bl%, b?*, andc,(n<0) over the
VeCtor |\ ,1,N 22, \p12, A p13,Ap23, N ). Introduce the bosonic Fock space

F()\al,)\aZ,)\blz,)\bl3,)\b23,)\C): @ F[l/(a+1)]}\a1,[2/(a+1)])\a2,)\b12+i+j Ap13+] A2+l N +i
i,j,lez
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It can be shown that the action dn‘q[sl(/2\|1)] on this space is closed, i.euq[sl(/2\|1)]F*
=F, for *=(N\a,Nz2,\p12\p13,\p23, ). Hence the Fock spaceF, constitutes a
Uq[sl(2|1)]-m0dule. The elementanyvertex operators are maps of the following Fock spaces:

¢r(z)v‘//r(z) : F()\al,)\az,)\blz,)\bls,)\bza,)\c)%F()\al+a+l,)\az+a+l,Ablz,)\bls,)\bza)\c!
(V.3)
* * .
¢r (Z)y‘l"r (z) F()xal,)\az,)\b1z,)\b13,>\b23,)\c)_)F()\al,

w Na2 o Np12 N 18 A28, N () 1

for all r=1,2,3,4.
Let us now discuss the emdedding of the highest weight mod(k§ in the bosonic Fock
spaceF, . We impose the highest weight conditions on the veftQr,\ 22, A p12,Ap13, A p23, A ),

€| Nat, N a2, Ap12, A p13, A p23, N ) =0,

(V.4)
hilNat, N a2, Ap12, A p13, A p23, A ) = Ni| N at, N a2, A p12, A 13, A p23, A )

for all i=0,1,2. Solving these conditions, we obtain the highest weight véétg0,0,0,0), where
B and y are arbitrary complex parameters. The corresponding highest weighy js (a—
+2y)Ag+2(B—7y)A1—BA,. Thus we have the identification

|)‘B,7>=|:8171010,0,0>. (V.5)
Denote by
F(B,«/)Z EB F[1/<a+1)]ﬁ,[2/<a+1)]y,iﬂ-,”,iﬂ- (V.6)
ijlez

the Fock space associated to this highest weight vector. It is easy to see thﬁq.[ﬁi(=2|1)]
action on the subspad€ ,) is still closed and thereforg g4 ,) is aUq[sI(2|1)] -module. Usmg
the highest weight vectdkﬁ ,)» We construct the levakhighest weight module dﬂq[sl(2|1)]

V(\g,,)=Ug[sI2ID)] [N g0 (V.7)

This module is not irreducible in general, but contains a maximal proper submédulg ,) such
that V(A g,,)/M(Ng,,) yields an |rredu0|bIqu[sI(2|1)] module. It is clear that the module
V(\g,,) can be embedded in the bosonic Fock sggge,) . Moreover, from(V.3) the elementary
g-vertex operators are mappings of the Fock spaces,

é:(2), ¥(2) © Fy—Fpratiyrary)
(V.8)
o1 (2), Y7 (2 ¢ Fiyp—Fp-aya-

However, the Fock spacg s ,, contains some redundancies arising from the free bosonic
field c(z;0). To seethis, we define the fermionic ghost systémé) of dimension(1, 0),

n(2)= EZ mz " Ti=efF0: g(z)= D) £z "=e o0 (V.9)

nez

The mode expansion ofy(z) and £(z) is well defined onF 4 ), and the modes satisfy the
relations

Emént Eném=0=nnt 70 m,  Emnt Mém= 5m+n,0- (V.10

Obviously, o€y and &y770 qualify as projectors and so we use them to decompggs, into a
direct sum of subspaces
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Fig.n= 100F (5,7 ® €070F (5,4) - (V.11)

7080 (s,4) IS referred to as Ker and £om0F (5,,)=F 5,4/ 70&0F (5.,) S Cokey, .
Proposition 4: n, commutes (or anticommutes) with the action qlfsj(2|1)]. ThusKer,70

and Cokeg70 are both U(1[sl(/2\|l)]—modules

We are now in a position to consider a restriction of the Fock spage, to a smaller space
Fp,y) » referred to as the Fock—Wakimoto space.
Proposition 5: The restricted Fock space

Fipn=Ker, Fg )= m0éoF (.4 (V.12

constitutes a FockWakimoto module of L,[sl(’z\ll)].

One can check thagg|\z,)=0 for any B, yeC. Thus|rg,) is a Uq[sl(/2\|1)] highest
weight vector belonging to the smaller space KEBg.y) - It follows that

Proposition 6: The FockWakimoto moduleF 4 ., is a highest weight lq[sl(/2\|l)]-module
with highest weight vectdmﬁﬁ and highest weighk s ., .

Using the projection operatoné,, we define the “projected-vertex operators’e,(z),
¢*(2), ¥.(2), and ¥y (2) as follows:

0(2)=70£0® (2) Moo, O(2)=,(2), ¥ (2), P (2) o P (2). (V.13)

Since 7, commutes with the elementagyvertex operators, we can deduce fr¢w8) that the
projectedg-vertex operators are mappings of the highest weight Fock—Wakimoto modules:

d)r(Z) : -7:(/5‘,7)_)-7:(/3+a+1,y+a+1)1

b(2) ¢ Fpp—Fpratiytatl)
(V.14)

55? (2) © Fpp=Fp-ay-a>

T//’rk @ Fep=Fp-ar-a-

VI. SCREEN CURRENTS AND CORRELATION FUNCTIONS

Due to the existence of backgound charges, the projesgtezttex operators are not yet the
proper bosonizations of thg-vertex operatorglV.1). In this section we construej-screen cur-
rents which balance the background charges and thus ensure the nonvanishing of correlation
functions of the bosonizeg-vertex operators.

Let us introduce the oscillators

arie Mo o 1o (VI.1)
™ L(kFLm] M R kL e ’ '

and define the corresponding curreBtéz) by

S(z)=: e '@kt D2.F (7). (V1.2)
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Bl(z)=: e P 4z0 b0 -bMa D +bTD) 5 o-ola 120). oI Tn(cotbp)

+q:eb13(z;0) b?3(qz0)+b%(2). ca " ~TIn(bg +b33 (VI.3)

T(z)= —q L D™B0); g VT Tm(Cor by b b, (V1.4)
Here we have used the notation

f(a2)—f(q *2)

ké’ f( ) (q q l)z

(V1.5)

Then we can verify _
Theorem 3: The currents §z) satisfy the following commutation relations with the

Uq[sl(/2\|1)] generators
[h},,S(w)]=0, neZz,

[X"(2),9(w)]=0, (V1.6)

_ . ) w i
[X™(2),S(w)]= 6" k+law(—zl-5 2):ea (wi=(k+D/2). |

That is, the currents '$z) (anti-)commute with the action ofqlpsl(/2\|1)] up to total differences.

The currents §z) are referred to as the g-screen currents oj[@l(2|1)].
ForpeC, |p|<1 andse C—{0}, one defines the Jackson integral

Josoof(z)dpz=s(1—p)mEE:Z f(sp™p™. (VL.7)

The Jackson integral enjoys the following property, among others,
S S
f f(z)dpz=j pf(pz)dyz, (VI1.8)
0 0
which implies that forp= g
S0
f kd.f(2)dpz=0. (VI.9)
0

Note that the right-hand side 6¥1.6) is a totalp=q?**1) difference. We have
Corollary 1: The screen charges

(s
Q':fo S(z)dyz, p=g?*Y, (V1.10)

assuming that the Jackson integrals are convergent, (anti-)commute with all the generators of
Uglsl(2]1)].
Since 7, commutes withS'(z),i = 1,2, the screen charges wik- a give rise to the following
mappings of the Fock—Wakimoto modules,
Q' 1 Fpy—Fip-1m (VI.11)

Q*: Fppn—Fpy-112)- (VI.12)
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Introduce the screenagvertex operators,

a‘)ixl ,")21)(2) — (Ql)xl( Qz)il?i’r(z),
XY (2)=(QYY(QYV1 g (2),
- ) (VI.13)
P (2)=(QHXUQY Y (2),
T (2) = (QYYAQYT (2).

We are now in a position to state
Theorem 4: The g-vertex operators (IV.1) are bosonized as

4

~\
(I) Lot ®Y 2 X1 1) (2)®v,,
Bn/ =
4
~\
CD)\B .7t 2 * (Y1, Y1)(Z)®vr ’
By =
(VI.14)
4
q,V”ﬁ x)A & (2)= 2 v ®¢/;(X1 1)(2)
67

~ VENRL oy L ~*(y'5/')
\I’)\ B (Y )(Z)ZE v;’k®¢r 191(z),
By r=1

1

where
BL(x)=B+a+1l-x;, Yi(X)=y+at+l—3X
(VI.15)

BLY)=B—a—y1, Y- W=y—a—3V

for certain choices of hon-negative integers X4, Y1, and’y; . These operators are intertwiners

of the highest weight g[sl(/z\ll)]—modules

~ \pl ), 1 ")V i
(Dx?«/(x ") Fien=Fg 0t 6@ Vazs
(I))\B y),v_ (Y)V F Foa1 V* * S
Npy (2 Fpp=F Bt 3@ Vaz
q,VMHx)y(x) F V. .®F
(2) + Fpy=Va@Fptx) i 7))
(VI.16)

By

~VENRL oy A
Byt . *So T ~
‘I’XM -7 (2) Fipn=Vaz®F Ly G-

In the following we computeéN-point correlation function which is defined to be the trace of
the bosonized}-vertex operators over tqu[sI(2|1)] module F g .y, that is
Trr, (4900, (2y) O, (21)). (V1.17)
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Here O, (z)) stands for the type b-vertex operators:ﬁfr' ’i')(z|),§5fl(y' Y)(z) or the type Il
g-vertex operators?pfr" ‘;(")(z|), Tﬁ:(y" S/")(ZO; Lo=—d is the g-Virasoro operator which is
bosonized ag¢for k=a#0,—1),

2

n
—Lo=2

= fﬁIIfaquﬂﬁ;(aiﬂaﬁ*aanaﬁ+(Q”+Q‘“)a§na@

1
(|c>1_2nb§2 b br*—b% b= c_ncq) | + —— (agag+ (ag)*+ag+3ap)

[n ]
+3((bg")2=bg(bg*+ 1) ~b3(bG*+ 1) — (co)?). (VI.18)

The zero mode part of th&ﬁ,aﬁ oscillators is added to thiey operator so that its eigenvalue on
INg,) is 112@+1)(Ng . Ng ,+2p), Wherep=Ag+ A +A,.
Let us define the Fock spaces fox Z,

FE?,y): D Flrata+ D1g[20at 1) Ipi+jj.i+j+s- (VI.19)
iilez

We haveF () =F . It can be shown thaty,&, intertwine various Fock spaces
. (s+1) .
M0 ¢ F@y—=Fhy & FEy=Fy -
Since 77?,=0, we obtain the following BRST complex:

Qs—1=70 Qs=10 Qs+1=70

(s) (s+1)
Fien Fis.y) : (V1.20)

It follows from 700+ £9770=1, that Kep_=Imq_, for anyse Z. We have
Proposition 7: The N-point correlation function of the type | vertex operators

Trs, (@GN N (zy)- 37 (2,)) 0

iff e N and EN 1% = 22 - Xij=N(a+1). For sucha and %, X;, the above trace is given by

[}

3 (1) M0 (G9(QY QA NGy, (20)+(QY QD (20).  (VI.21)

Similarly, the N-point correlator of the type Il vertex operators

Lo, (XN %) (Xl ;)
Trr,, (@R N (2 G (2y))

=2 (~1)°"HTrecs (qH(QY QY N, (2y)+(QY QY i, (22))
(V1.22)

is nonvanishing ifiee N and=  x/ =1/25N %/ =N(a+1).
We now consider th&l-point correlatlon function involving also dual vertex operators,

Trf(ﬁ,y)(qLO’%:N(yN ’yN)(ZN)' . 'a:iy]I_Jrl’lerl)(ZH'l)a(rTl ’Xl)(zl) :i) X1, xl)(zl)) (V1.23)

Then we have
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Proposition 8: Forae N, (VI1.23) is nonzero iffS]_ x+2N ., yi=3 (S %+=N . .%)
=(2l=N)a+I. And for @& N it is nonvanishing iff N is even, i,eN=2L, and I=L=EiL:1xi
+3N Y= % +2N L .%). In both cases, the trace (VI.23) can be written as the fol-

lowing unified formula:

(V1.23= 2, (= 1)*"Trecs (9 (QYNQH MY, (2y):+-(QYY QY 1t (2140)

X(QYM(Q)M b (2)(QN Q) ghr (22)). (V1.24)

An integral formula for the N-point functions of type Il (dual) vertex operators can be written
down in a similar way, which we omit
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