239 research outputs found
Stochastic transitions of attractors in associative memory models with correlated noise
We investigate dynamics of recurrent neural networks with correlated noise to
analyze the noise's effect. The mechanism of correlated firing has been
analyzed in various models, but its functional roles have not been discussed in
sufficient detail. Aoyagi and Aoki have shown that the state transition of a
network is invoked by synchronous spikes. We introduce two types of noise to
each neuron: thermal independent noise and correlated noise. Due to the effects
of correlated noise, the correlation between neural inputs cannot be ignored,
so the behavior of the network has sample dependence. We discuss two types of
associative memory models: one with auto- and weak cross-correlation
connections and one with hierarchically correlated patterns. The former is
similar in structure to Aoyagi and Aoki's model. We show that stochastic
transition can be presented by correlated rather than thermal noise. In the
latter, we show stochastic transition from a memory state to a mixture state
using correlated noise. To analyze the stochastic transitions, we derive a
macroscopic dynamic description as a recurrence relation form of a probability
density function when the correlated noise exists. Computer simulations agree
with theoretical results.Comment: 21 page
Sugar metabolism in expanding husk leaves of flint corn (Zea mays L.) genotypes differing in husk leaf size
Relationships between leaf expansion and MeOH-soluble (cytosol) and cell-wall fractions, and their sugar composition prior to silking in flint corn lines were studied. A greater husk leaf area of one genotype, X-15 is mainly due to prolonged and higher rate of expansion. Prior to rapid expansion of husk leaf area, neutral sugars in the cytosol fraction accounted for most of the non-starch carbohydrates (56-62%), while hemicellulose and cellulose fractions accounted for less than 20%.0 In mature leaf parts, however, sugars in the cytosol fraction decreased but those in hemicellulose and cellulose fractions increased by 30 0x1.e499cp-891nd 42%, respectively. The predominant sugar in the cytosol fraction was glucose (Glc), while in the hemicellulose fraction xylose (Xyl) and arabinose (Ara) dominated. During rapid expansion of husk leaves, 13C was incorporated at a higher rate into hemicellulose than cellulose, and this process was more active in X-15 than in other genotypes. During an identical period, 13C atom 0.000000e+00xcess in Xyl increased markedly in the hemicellulose fraction, however it remained low in the cytosol one. The current results suggest that synthesis of Xyl and xylan plays an important role in renewal of hemicellulose, which may be required for expansion
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity
Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients
Formin 1-Isoform IV Deficient Cells Exhibit Defects in Cell Spreading and Focal Adhesion Formation
Background: Regulation of the cytoskeleton is a central feature of cell migration. The formin family of proteins controls the rate of actin nucleation at its barbed end. Thus, formins are predicted to contribute to several important cell processes such as locomotion, membrane ruffling, vesicle endocytosis, and stress fiber formation and disassociation. Methodology/Principal Findings: In this study we investigated the functional role of Formin1-isoform4 (Fmn1-IV) by using genetically null primary cells that displayed augmented protrusive behaviour during wound healing and delayed cell spreading. Cells deficient of Fmn1-IV also showed reduced efficiency of focal adhesion formation. Additionally, we generated an enhanced green fluorescence protein (EGFP)-fused Fmn1-IV knock-in mouse to monitor the endogenous subcellular localization of Fmn1-IV. Its localization was found within the cytoplasm and along microtubules, yet it was largely excluded from adherens junctions. Conclusions/Significance: It was determined that Fmn1-IV, as an actin nucleator, contributes to protrusion of the cell’s leading edge and focal adhesion formation, thus contributing to cell motility
Seasonality of Plasmodium falciparum transmission: a systematic review
This article is fully open access and the published version is available free of charge from the jounal website.http://www.malariajournal.com/content/14/1/343Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Keywords: Plasmodium falciparum ; Seasonality; Climatic driversAcknowledgements
This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. DLS is funded by a grant from the Bill & Melinda Gates Foundation (OPP1110495), which also supports RCR. PMA is grateful to the University of Utrecht for supporting him with The Belle van Zuylen Chair. PWG is a Career Development Fellow (K00669X) jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and receives support from the Bill and Melinda Gates Foundation (OPP1068048, OPP1106023)
Nucleic acid-based fluorescent probes and their analytical potential
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays
Detection of peptide-specific CTL-precursors in peripheral blood lymphocytes of cancer patients
Development of therapeutic vaccines is one of the major areas of tumour immunotherapy today. However, clinical trials of peptide-based cancer vaccines have rarely resulted in tumour regression. This failure might be due to an insufficient induction of cytotoxic T lymphocytes in the current regimes, in which cytotoxic T lymphocytes-precursors in pre-vaccination peripheral blood mononuclear cells are not measured. Initiation of immune-boosting through vaccination could be better than that of immune-priming with regard to induction of prompt and strong immunity. If this is also the case for therapeutic vaccines, pre-vaccination measurement of peptide-specific cytotoxic T lymphocytes-precursors will be important. In the present study, we investigated whether cytotoxic T lymphocytes-precursors reacting to 28 kinds of peptides of vaccine candidates (13 and 15 peptides for HLA-A24+ and HLA-A2+ patients, respectively) were detectable in pre-vaccination peripheral blood mononuclear cells of 80 cancer patients. Peptide-specific cytotoxic T lymphocytes-precursors were found to be detectable in peripheral blood mononuclear cells of the majority of cancer patients (57 out of 80 cases, 71%). The mean numbers of positive peptides were 2.0 peptides per positive case. Peripheral blood mononuclear cells incubated with positive peptides, not with negative peptides, showed significant levels of HLA-class-I-restricted cytotoxicity to cancer cells. The profiles of positive peptides entirely varied among patients, and were not influenced by the cancer origin. These results may provide a scientific basis for the development of a new approach to cancer immunotherapy, e.g.) cytotoxic T lymphocytes-precursor-oriented peptide vaccine
- …