3,389 research outputs found

    Non-equilibrium and non-linear stationary state in thermoelectric materials

    Full text link
    Efficiency of thermoelectric materials is characterized by the figure of merit Z. Z has been believed to be a peculiar material constant. However, the accurate measurements in the present work reveal that Z has large size dependence and a non-linear temperature distribution appears as stationary state in the thermoelectric material. The observation of these phenomena is achieved by the Harman method. This method is the most appropriate way to investigate the thermoelectric properties because the dc and ac resistances are measured by the same electrode configuration. We describe the anomalous thermoelectric properties observed in mainly (Bi,Sb)2Te3 by the Harman method and then insist that Z is not the peculiar material constant but must be defined as the physical quantity dependent of the size and the position in the material.Comment: 9 pages, 4 figures. submitted to Applied Physics Lette

    Electromagnetic K+ production on the deuteron with hyperon recoil polarization

    Get PDF
    Photo- and electroproduction processes of K+ on the deuteron are investigated theoretically. Modern hyperon-nucleon forces as well as an updated kaon production operator on the nucleon are used. Sizable effects of the hyperon-nucleon final state interaction are seen in various observables. Especially the photoproduction double polarization observable C_z is shown to provide a handle to distinguish different hyperon-nucleon force models.Comment: 4 pages, 7 eps-figures, talk given at the VII International Conference on Hypernuclear and Strange Particle Physics, Torino, Italy, October 23-27, 2000, to appear in the proceedings (Nucl. Phys. A

    Spin Polarized versus Chiral Condensate in Quark Matter at Finite Temperature and Density

    Get PDF
    It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodynamics. It is indicated within this low energy effective model that the chiral symmetry is broken again by the spin polarized condensate as increasing the quark number density, while the chiral symmetry restoration occurs in which the chiral condensate disappears at a certain density.Comment: 25 pages, 9 figure

    Spontaneous magnetization in high-density quark matter

    Get PDF
    It is shown that the spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in the high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnetization due to the anomalous magnetic moments of quarks. The implications to the strong magnetic field in the compact stars is discussed.Comment: 19 pages, 3 figure

    Spin Polarization versus Color-Flavor-Locking in High Density Quark Matter

    Get PDF
    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of the color-flavor locking at high baryon density by using the Nambu-Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between the color-flavor locked phase and the spin polarized phase is the first order by means of the second order perturbation theory.Comment: 23 pages, 4 figure

    Identification of SH Δv=1\Delta v=1 ro-vibrational lines in R And

    Get PDF
    We report the identification of SH Δv=1\Delta v=1 ro-vibrational lines in the published high-resolution infrared spectrum of the S-type star, R And. This is the first astronomical detection of this molecule. The lines show inverse P-Cygni profiles, indicating infall motion of the molecular layer due to stellar pulsation. A simple spherical shell model with a constant infall velocity is adopted to determine the condition of the layer. It is found that a single excitation temperature of 2200 K reproduces the observed line intensities satisfactory. SH is located in a layer from 1.0 to ~1.1 stellar radii, which is moving inward with a velocity of 9 km s-1. These results are consistent with the previous measurements of CO Δv=3\Delta v=3 transitions. The estimated molecular abundance SH/H is 1x10^-7, consistent with a thermal equilibrium calculation.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter

    Carbon stars in the IRTS survey

    Full text link
    We have identified 139 cool carbon stars in the near-infrared spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns. Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend relating the 3.1 microns band strength to the K-L' color index, which is known to correlate with mass-loss rate. This could be an effect of a relation between the depth of the 3.1 microns feature and the degree of development of the extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200
    • …
    corecore