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It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs
instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model
with four-point tensor-type interaction. Also, it is indicated that the order of phase transition
between the color–flavor-locked phase and the spin-polarized phase is the first order by means
of second-order perturbation theory.
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1. Introduction

A recent point of interest in the physics governed by quantum chromodynamics (QCD) may be to
understand the structure of the phase diagram on a plane with respect to, for example, temperature
and baryon chemical potential or external magnetic field, isospin chemical potential, and so forth [1].
In particular, under extreme conditions such as high baryon density, it is interesting what phase
is favorable and is realized. In the region with high baryon density and low temperature in quark
matter, it is believed that there exists a two-flavor color superconducting (2SC) phase or the color–
flavor-locked (CFL) phase [2]. In the preceding study, it was indicated that the spin-polarized phase
may appear at high baryon density due to a pseudovector-type interaction between quarks [3–5].
However, in the limit of the quark mass being zero, it has been shown that the spin-polarized phase
disappears [6].

In our preceding paper [7], it was shown that the quark spin-polarized (SP) phase in the two-flavor
case is realized in the region of high baryon density by the use of the Nambu–Jona-Lasinio (NJL)
model [8,9] devised by four-point tensor-type interaction with chiral symmetry [10]. Further, since
the 2SC phase may exist in two-flavor QCD at high baryon density, it was also investigated whether
the quark spin-polarized phase is realized or not against the 2SC phase. As a result, it was shown
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that the quark spin-polarized phase is actually realized in the same two-flavor NJL model adding to
the quark-pair interaction [11].

In this paper, the possibility of quark spin polarization for each flavor is investigated in the three-
flavor case by using the NJL model with four-point tensor-type interaction. In the three-flavor case,
the CFL phase may be realized at high baryon density. Thus, the quark-pairing interaction is intro-
duced and it is investigated which phase, namely the CFL phase or the SP phase, is favorable
energetically and is realized at high baryon density. Also, if both phases exist, it is necessary to
discuss the order of phase transition between the CFL and SP phases.

This paper is organized as follows: In the next section, the NJL-type model Hamiltonian is
explained. In Sect. 3 with Appendix A, under the above-derived Hamiltonian, the CFL phase without
the condensate of the quark spin polarization and/or the SP phase without the color superconducting
gap are discussed. In Sect. 4, numerical results are given and the realized phase in certain density
regions is considered. In Sect. 5, based on the CFL phase and dealing with tensor-type interaction as
a perturbation term, the order of phase transition from the CFL phase to the SP phase is discussed.
Some expressions needed in the calculation of second-order perturbation are given in Appendix B.
he last section is devoted to a summary and concluding remarks.

2. Hamiltonian showing three-flavor color superconductivity and spin polarization
based on the NJL model

Let us start with the following NJL-type Lagrangian density:

L = ψ̄iγ μ∂μψ − G

4
(ψ̄γ μγ νλ

f
k ψ)(ψ̄γμγνλ

f
k ψ)+ Gc

2
(ψ̄iγ5λ

c
aλ

f
k ψ

C)(ψ̄Ciγ5λ
c
aλ

f
k ψ), (2.1)

where ψC = Cψ̄T with C = iγ 2γ 0 being the charge conjugation operator. Also, λ f
k and λc

a are the
flavor and color su(3) Gell-Mann matrices, respectively. Here, the NJL Lagrangian density con-
tains other four-point interaction parts which are not explicitly shown such as G0(ψ̄ψ)(ψ̄ψ) and
is invariant under chiral transformation. However, in this paper, some terms are omitted because we
investigate only the condensates with respect to color–flavor locking and each quark-spin polarization
in high density quark matter in the mean field approximation. For example, at high baryon density,
the chiral condensate 〈ψ̄ψ〉 is equal to zero. Further, in the three-flavor case, it is well known that the
Kobayashi–Maskawa–’t Hooft (KMT) term [12,13] appears, which describes the UA(1) anomaly and
is represented by the six-point interaction with determinant-type form in the NJL model. However,
hereafter, since we adopt the mean field approximation, the KMT term only gives contributions such
as 〈ψ̄uψu〉〈ψ̄dψd〉〈ψ̄sψs〉, 〈ψ̄dψd〉〈ψ̄sψs〉(ψ̄uψu), and so on, where ψ f represents the quark field
with flavor f and 〈· · · 〉 represents the condensate. Thus, at the high baryon density under investiga-
tion in this paper, there is no contribution of the KMT term because the chiral condensate 〈ψ̄ fψ f 〉
is zero. As for the quark masses, although the strange quark mass with 0.1 GeV is certainly non-
zero compared with the up and down quark masses, we may safely ignore the strange quark mass
at high baryon density with the quark chemical potential being 0.4–0.5 GeV under consideration in
this paper. Thus, we ignore the quark mass term in (2.1).

Within the mean field approximation, the above Lagrangian density is expressed as

LM F = ψ̄iγ μ∂μψ + LM F
T + LM F

c ,

LM F
T = −

∑
k=3,8

Fk(ψ̄�3λ
f
k ψ)− 1

2G

∑
k=3,8

F2
k ,
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�3 = −iγ 1γ 2 =
(
σ3 0
0 σ3

)
,

F3 = −G〈ψ̄�3λ
f
3ψ〉, F8 = −G〈ψ̄�3λ

f
8ψ〉,

Fu = F3 + 1√
3

F8, Fd = −F3 + 1√
3

F8, Fs = − 2√
3

F8,

LM F
c = −1

2

∑
(a,k)={2,5,7}

((
	∗

ak(ψ̄
Ciγ5λ

c
aλ

f
k ψ)+ h.c.

)
+ 1

2GC
|	ak |2

)
,

	ak = −Gc〈ψ̄Ciγ5λ
c
aλ

f
k ψ〉, (2.2)

where h.c. represents the Hermitian conjugate term of the preceding one. Here, we used the Dirac
representation for the Dirac gamma matrices and σ3 represents the third component of the 2 × 2 Pauli
spin matrices. The symbol 〈· · · 〉 represents the expectation value with respect to a vacuum state. The
expectation values F3 and F8 correspond to the order parameter of the spin alignment which may
lead to quark spin polarization. The expectation value	ak corresponds to the quark-pair condensate
which means the existence of the color superconducting phase if 	ak �= 0.

The mean field Hamiltonian density with quark chemical potential μ is easily obtained as

HM F − μN = K0 + HM F
T + HM F

c ,

K0 = ψ̄(−iγ · ∇ − μγ0)ψ,

HM F
T = −LM F

T , HM F
c = −LM F

c , (2.3)

with N = ψ†ψ . In the Dirac representation for the Dirac gamma matrices, the Hamiltonian matrix
of the spin polarization part in H S P

M F = ∫
d3x (K0 + HM F

T ) is written as

hS P
M F = p · α + Fτ β�3

=

⎛
⎜⎜⎜⎝

Fτ 0 p3 p1 − i p2

0 −Fτ p1 + i p2 p3

p3 p1 − i p2 −Fτ 0
p1 + i p2 −p3 0 Fτ

⎞
⎟⎟⎟⎠ , (2.4)

where αi = γ 0γ i and β = γ 0. Here, we define Fτ as

Fτ =
∑

k=3,8

Fkλ
f
k =

(
F3 + 1√

3
F8

)
δτu +

(
−F3 + 1√

3
F8

)
δτd − 2√

3
F8δτ s . (2.5)

For good helicity states, this Hamiltonian matrix is easily diagonalized in the case Fτ = 0. For sim-
plicity, we rotate around the p3 axis and we set p2 = 0 without loss of generality. In this case, we
derive κ = U−1hS P

M FU as follows:

U = 1

2
√

p

⎛
⎜⎜⎜⎜⎜⎝

√
p + p3

√
p − p3 −√

p + p3 −√
p − p3

p1
|p1|

√
p − p3 − p1

|p1|
√

p + p3 − p1
|p1|

√
p − p3

p1
|p1|

√
p + p3

√
p + p3 −√

p − p3
√

p + p3 −√
p − p3

p1
|p1|

√
p − p3

p1
|p1|

√
p + p3

p1
|p1|

√
p − p3

p1
|p1|

√
p + p3

⎞
⎟⎟⎟⎟⎟⎠ ,
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κ = U−1hS P
M FU

=

⎛
⎜⎜⎜⎝

p 0 0 0
0 p 0 0
0 0 −p 0
0 0 0 −p

⎞
⎟⎟⎟⎠+ Fτ

p

⎛
⎜⎜⎜⎝

0 |p1| −p3 0
|p1| 0 0 p3

−p3 0 0 |p1|
0 p3 |p1| 0

⎞
⎟⎟⎟⎠ . (2.6)

Finally, in the original basis rotated around the p3 axis, |p1| is replaced by
√

p2
1 + p2

2 . Thus, the
many-body Hamiltonian can be expressed by means of the quark creation and annihilation operators
as is seen later.

As for the Hamiltonian matrix of the color superconducting part, H M F
c = ∫

d3xHM F
c , we can

derive another expression by using the quark creation and annihilation operators with respect to
good helicity states, similarly to Ref. [11]. As a result, in the basis of good helicity states, the relevant
combination of the mean field Hamiltonian HM F = ∫

d3xHM F and the quark number N = ∫
d3xN

is given by

H = H0 − μN̂ + VSP + VCFL + V · 1

2G
(F2

3 + F2
8 )+ V · 3	2

2Gc
,

H0 − μN̂ =
∑
pητα

[
(| p| − μ)c†

pηταcpητα − (| p| + μ)c̃†
pητα c̃†

pητα

]
,

VSP =
∑
pητα

Fτ
⎡
⎣
√

p2
1 + p2

2

| p|
(

c†
pηταcp−ητα + c̃†

pητα c̃p−ητα
)

− η
p3

| p|
(

c†
pητα c̃pητα + c̃†

pηταcpητα

)⎤⎦ ,
VCFL = 	

2

∑
pη

∑
αα′α′′

∑
ττ ′

(
c†

pηατ c†
−pηα′τ ′ + c−pηα′τ ′cpηατ + c̃†

pηατ c̃†
−pηα′τ ′ + c̃−pηα′τ ′ c̃pηατ

)

× εαα′α′′εττ ′τα′′φp, (2.7)

where V represents the volume in the box normalization. Here, c†
pητα and c̃†

pητα represent the
quark and antiquark creation operators1 with momentum p, helicity η = ±, flavor index τ , and
color α. It should be noted that α (= 1, 2, 3) and τ (= u, d, s) represent color and flavor, respec-
tively, and in particular we understand τ1 = u, τ2 = d, and τ3 = s. Hereafter, we will use p ≡ ( p, η)
and p̄ ≡ (− p, η) as abbreviated notations. Also, εττ ′τ ′′ and εαα′α′′ represent the complete antisym-

metric tensor for the flavor and color indices. We define p =
√

p2
1 + p2

2 + p2
3 , that is, the magni-

tude of momentum. In (2.7), the color and flavor are locked due to VCFL. Namely, the combinations

1 Here, it is necessary to introduce φp in (2.7) for the character of fermion operator cpητα and c̃pητα . Namely,
for example,∑

pη{α}{τ }
c†

pηταc†
−pητ ′α′φpεαα′α′′εττ ′τα′′ = 1

2

∑
pη{α}{τ }

(c†
pηταc†

−pητ ′α′φp + c†
−pηταc†

pητ ′α′φ p̄)εαα′α′′εττ ′τα′′

= 1

2

∑
pη{α}{τ }

(c†
pηταc†

−pητ ′α′φp − c†
pητ ′α′c

†
−pηταφ p̄)εαα′α′′εττ ′τα′′

= 1

2

∑
pη{α}{τ }

(c†
pηταc†

−pητ ′α′φp − c†
pηταc†

−pητ ′α′φ p̄)εαα′α′′εττ ′τα′′ .

Thus, we find φp = −φ p̄ with p = ( p, η) and p̄ = (− p, η).
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〈cp̄1ucp2d〉 − 〈cp̄1dcp2u〉, 〈cp̄2dcp3s〉 − 〈cp̄2scp3d〉, and 〈cp̄3scp1u〉 − 〈cp̄3ucp1s〉 appear in the CFL
condensate 	, in which we define

	α′′τα′′ = Gc

∑
pηαα′

∑
ττ ′

〈c−pηα′τ ′cpηατ 〉εαα′α′′εττ ′τα′′φp,

	 = 	1u = 	2d = 	3s . (2.8)

The symmetry su(3)CFL remains because the symmetry-breaking pattern is su(3)c ⊗ su(3) f →
su(3)CFL.

3. Color–flavor-locked phase without spin polarization and spin-polarized phase
without color–flavor locking

3.1. Color–flavor-locked phase without spin polarization

Let us consider the case Fk = 0, which leads to the color superconductor without spin
polarization [14,15]. The Hamiltonian is expressed as

Heff = H0 − μN̂ + VCFL + V · 3	2

2Gc
,

H0 − μN̂ =
∑
pητα

[
(| p| − μ)c†

pηταcpητα − (| p| + μ)c̃†
pητα c̃†

pητα

]
,

VCFL = 	

2

∑
pη

∑
αα′α′′

∑
ττ ′

(
c†

pηατ c†
−pηα′τ ′ + c−pηα′τ ′cpηατ + c̃†

pηατ c̃†
−pηα′τ ′ + c̃−pηα′τ ′ c̃pηατ

)

× εαα′α′′εττ ′τα′′φp. (3.1)

Hereafter, we use an abbreviated notation p = ( p, η) and p̄ = (− p, η). The commutation relations
are calculated as

[Heff, cp1u] = −(εpu − μ)cp1u −	(c†
p̄2d + c†

p̄3s)φp,

[Heff, cp2u] = −(εpu − μ)cp2u +	c†
p̄1dφp,

[Heff, cp3u] = −(εpu − μ)cp3u +	c†
p̄1sφp,

[Heff, cp1d ] = −(εpd − μ)cp1d +	c†
p̄2uφp,

[Heff, cp2d ] = −(εpd − μ)cp2d −	
(

c†
p̄3s + c†

p̄1u

)
φp,

[Heff, cp3d ] = −(εpd − μ)cp3d +	c†
p̄2sφp,

[Heff, cp1s] = −(εps − μ)cp1s +	c†
p̄3uφp,

[Heff, cp2s] = −(εps − μ)cp2s +	c†
p̄3dφp,

[Heff, cp3s] = −(εps − μ)cp3s −	(c†
p̄1u + c†

p̄2d)φp, (3.2)

where εpu = εpd = εps = | p| (= εp). Thus, (1u), (2d), and (3s) become combined with each other.
Further, the sets (2u, 1d), (3u, 1s), and (3d, 2s) are mixed each other. First, let us consider the case

5/22

 at D
T

U
 L

ibrary on M
arch 24, 2015

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 013D02 Y. Tsue et al.

εpτ > μ. Thus, for example, we are led to consider new operators such as the following one:

d†
p2u = X pc†

p2u + Ypcp̄1d . (3.3)

Here, we demand that this operator should satisfy the following commutation relation in order to
diagonalize the Hamiltonian Heff:

[Heff, d†
p2u] = [(εpu − μ)X p −	Ypφp]c†

p2u + [−(εpd − μ)Yp −	X pφp]cp̄1d

≡ ω d†
p2u . (3.4)

Then, X p and Yp are determined from the following equation:

(
εp − μ −	φp

−	φp −(εp − μ)

)(
X p

Yp

)
= ω

(
X p

Yp

)
. (3.5)

As a result, we can derive the following:

X p = 1√
2

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, Yp = − 1√
2

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

φp, (3.6)

ωp =
√
ε̄2

p +	2, ε̄p = εp − μ.

Similarly, we can introduce new operators and the results are summarized as follows for | p| > μ:

d†
p;1 = x (1)p (c†

p1u + c†
p2d + c†

p3s)+ y(1)p (cp̄1u + cp̄2d + cp̄3s),

x (1)p = 1√
6

⎡
⎣1 + ε̄p√

ε̄2
p + 4	2

⎤
⎦

1/2

, y(1)p = 1√
6

⎡
⎣1 − ε̄p√

ε̄2
p + 4	2

⎤
⎦

1/2

· φp,

ω1 =
√
ε̄2

p + 4	2,

d†
p;2 = x (2)p (c†

p1u − c†
p2d)+ y(2)p (cp̄1u − cp̄2d),

x (2)p = 1

2

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, y(2)p = −1

2

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,

ω2 =
√
ε̄2

p +	2,

d†
p;3 = x (3)p (c†

p1u + c†
p2d − 2c†

p3s)+ y(3)p (cp̄1u + cp̄2d − 2cp̄3s),

x (3)p = 1

2
√

3

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, y(3)p = − 1

2
√

3

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,
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ω3 =
√
ε̄2

p +	2,

dp;4 = d†
p2u = X pc†

p2u + Ypcp̄1d , dp;5 = d†
p1d = X pc†

p1d + Ypcp̄2u,

dp;6 = d†
p3u = X pc†

p3u + Ypcp̄1s, dp;7 = d†
p1s = X pc†

p1s + Ypcp̄3u,

dp;8 = d†
p3d = X pc†

p3d + Ypcp̄2s, dp;9 = d†
p2s = X pc†

p2s + Ypcp̄3d ,

X p = 1√
2

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, Yp = − 1√
2

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,

ω =
√
ε̄2

p +	2, (3.7)

where ε̄p = | p| − μ, y(i)p̄ = −y(i)p , and Yp̄ = −Yp. Inversely, we can derive the following:

c†
p1u = x (1)p d†

p;1 + x (2)p d†
p;2 + x (3)p d†

p;3 − (y(1)p dp̄;1 + y(2)p dp̄;2 + y(3)p dp̄;3),

c†
p2d = x (1)p d†

p;1 − x (2)p d†
p;2 + x (3)p d†

p;3 − (y(1)p dp̄;1 − y(2)p dp̄;2 + y(3)p dp̄;3),

c†
p3s = x (1)p d†

p;1 − 2x (3)p d†
p;3 − (y(1)p dp̄;1 − 2y(3)p dp̄;3),

c†
p2u = X pd†

p2u − Ypdp̄1d , c†
p1d = X pd†

p1d − Ypdp̄2u, c†
p3u = X pd†

p3u − Ypdp̄1s,

c†
p1s = X pd†

p1s − Ypdp̄3u, c†
p3d = X pd†

p3d − Ypdp̄2s, c†
p2s = X pd†

p2s − Ypdp̄3d . (3.8)

As for εp < μ with εp = | p|, we can introduce the new operators in a similar way to the case of
εp > μ. The new operators, d̄ p̄;i , satisfy diagonalized commutation relations such as

[Heff, d̄ p̄;i ] = −ωi d̄ p̄;i , (3.9)

where ω4 = ω5 = · · · = ω9 = ω. Then, the new operators can be derived as

d̄ p̄;1 = x̄ (1)p (c†
p1u + c†

p2d + c†
p3s)+ ȳ(1)p (cp̄1u + cp̄2d + cp̄3s),

x̄ (1)p = 1√
6

⎡
⎣1 − ε̄p√

ε̄2
p + 4	2

⎤
⎦

1/2

, ȳ(1)p = − 1√
6

⎡
⎣1 + ε̄p√

ε̄2
p + 4	2

⎤
⎦

1/2

· φp,

ω1 =
√
ε̄2

p + 4	2,

d̄ p̄;2 = x̄ (2)p (c†
p1u − c†

p2d)+ ȳ(2)p (cp̄1u − cp̄2d),

x̄ (2)p = 1

2

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, ȳ(2)p = 1

2

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,

ω2 =
√
ε̄2

p +	2,

d̄ p̄;3 = x̄ (3)p (c†
p1u + c†

p2d − 2c†
p3s)+ ȳ(3)p (cp̄1u + cp̄2d − 2cp̄3s),
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x̄ (3)p = 1

2
√

3

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, ȳ(3)p = 1

2
√

3

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,

ω3 =
√
ε̄2

p +	2,

d̄ p̄;4 = d̄ p̄2u = X̄ pc†
p2u + Ȳpc p̄1d , d̄ p̄;5 = d̄ p̄1d = X̄ pc†

p1d + Ȳpc p̄2u,

d̄ p̄;6 = d̄ p̄3u = X̄ pc†
p3u + Ȳpc p̄1s, d̄ p̄;7 = d̄ p̄1s = X̄ pc†

p1s + Ȳpc p̄3u,

d̄ p̄;8 = d̄ p̄3d = X̄ pc†
p3d + Ȳpc p̄2s, d̄ p̄;9 = d̄ p̄2s = X̄ pc†

p2s + Ȳpc p̄3d ,

X̄ p = 1√
2

⎡
⎣1 − ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

, Ȳp = 1√
2

⎡
⎣1 + ε̄p√

ε̄2
p +	2

⎤
⎦

1/2

· φp,

ω =
√
ε̄2

p +	2. (3.10)

The following inverse relations are obtained:

c†
p1u = x̄ (1)p d̄ p̄;1 + x̄ (2)p d̄ p̄;2 + x̄ (3)p d̄ p̄;3 − (ȳ(1)p d̄†

p;1 + ȳ(2)p d̄†
p;2 + ȳ(3)p d̄†

p;3),

c†
p2d = x̄ (1)p d̄ p̄;1 − x̄ (2)p d̄ p̄;2 + x̄ (3)p d̄ p̄;3 − (ȳ(1)p d̄†

p;1 − ȳ(2)p d̄†
p;2 + ȳ(3)p d̄†

p;3),

c†
p3s = x̄ (1)p d̄ p̄;1 − 2x̄ (3)p d̄ p̄;3 − (ȳ(1)p d̄†

p;1 − 2ȳ(3)p d̄†
p;3),

c†
p2u = X̄ pd̄ p̄2u − Ȳpd̄†

p1d , c†
p1d = X̄ pd̄ p̄1d − Ȳpd̄†

p2u, c†
p3u = X̄ pd̄ p̄3u − Ȳpd̄†

p1s,

c†
p1s = X̄ pd̄ p̄1s − Ȳpd̄†

p3u, c†
p3d = X̄ pd̄ p̄3d − Ȳpd̄†

p2s, c†
p2s = X̄ pd̄ p̄2s − Ȳpd̄†

p3d . (3.11)

By using the above operators, we rewrite Heff as is shown in (A1) in Appendix A. Noting X p etc. in
(3.7) and (3.10), we finally obtain the following diagonalized many-body Hamiltonian without spin
polarization:

Heff = 1

2

∑
p (εp>μ)

[
9ε̄p −

√
ε̄2

p + 4	2 − 8
√
ε̄2

p +	2
]

+
∑

p (εp>μ)

[√
ε̄2

p + 4	2d†
p;1dp;1 +

9∑
a=2

√
ε̄2

p +	2d†
p;adp;a

]

+ 1

2

∑
p (εp<μ)

[
9ε̄p −

√
ε̄2

p + 4	2 − 8
√
ε̄2

p +	2
]

+
∑

p (εp<μ)

[√
ε̄2

p + 4	2d̄†
p;1d̄p;1 +

9∑
a=2

√
ε̄2

p +	2d̄†
p;ad̄p;a

]
+ V · 3	2

2Gc
. (3.12)

Next, let us derive and solve the gap equation for the CFL phase with F3 = F8 = 0 to obtain 	.
The vacuum state is written as |�〉, which is a vacuum with respect to the quasi-particle operators
dp;a and d̄p;a:

dp;a|�〉 = d̄p;a|�〉 = 0 . (3.13)
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Thus, the thermodynamic potential �0 can be expressed as

�0 = 1

V
· 〈�|Heff|�〉

= 1

2V

∑
p (εp>μ)

[
9ε̄p −

√
ε̄2

p + 4	2 − 8
√
ε̄2

p +	2
]

+ 1

2V

∑
p (εp<μ)

[
9ε̄p −

√
ε̄2

p + 4	2 − 8
√
ε̄2

p +	2
]

+ 3	2

2Gc
. (3.14)

The gap equation, ∂�0/∂	 = 0, can be expressed as

	

⎛
⎝ 3

Gc
−
∫ � d3 p

(2π)3

⎛
⎝ 4√

ε̄2
p + 4	2

+ 8√
ε̄2

p +	2

⎞
⎠
⎞
⎠ = 0, (3.15)

where � represents a three-momentum cutoff. Here, the helicity η = ±1 is considered which gives
a factor 2. Namely, the above gap equation with 	 �= 0 is written as

1 = 2Gc

3π2

∫ �

0
dp p2

(
1√

(p − μ)2 + 4	2
+ 2√

(p − μ)2 +	2

)
, (3.16)

where p = | p|. Solving (3.16) with respect to 	 and substituting its solution into (3.14), the
thermodynamic potential (3.14) is obtained:

�0 = 1

2π2

∫ �

0
dp p2

(
9(p − μ)−

√
(p − μ)2 + 4	2 − 8

√
(p − μ)2 +	2

)
+ 3	2

2Gc
. (3.17)

The right-hand sides of Eqs. (3.16) and (3.17) can be analytically expressed using the following
formulae:

∫ �

0
dp

p2√
(p − μ)2 + c	2

=
[

p + 3μ

2

√
p2 − 2μp + μ2 + c	2

]�
0

+
[(
μ2 − c	2

2

)
ln

∣∣∣∣2p − 2μ+ 2
√

p2 − 2μp + μ2 + c	2

∣∣∣∣
]�

0
,

∫ �

0
dp p2

√
(p − μ)2 + c	2 =

[
3p + 5μ

12
(p2 − 2μp + μ2 + c	2)3/2

]�
0

+
[

4μ2 − c	2

8

(
(p − μ)

√
p2 − 2μp + μ2 + c	2

+ c	2 ln

∣∣∣∣2p − 2μ+ 2
√

p2 − 2μp + μ2 + c	2

∣∣∣∣
)]�

0
.

(3.18)

Of course, if 	 = 0, the thermodynamic potential is given by

�0(	 = 0) = −3μ4

8π2 . (3.19)
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3.2. Spin-polarized phase without color superconducting gap 	

In this subsection, we derive the thermodynamic potential with 	 = 0. In this case, it is only
necessary to diagonalize the Hamiltonian matrix (2.6), namely,

κ =

⎛
⎜⎜⎜⎝

p 0 0 0
0 p 0 0
0 0 −p 0
0 0 0 −p

⎞
⎟⎟⎟⎠+ Fτ

p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

p2
1 + p2

2 −p3 0√
p2

1 + p2
2 0 0 p3

−p3 0 0
√

p2
1 + p2

2

0 p3

√
p2

1 + p2
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

q eτ −gτ 0
eτ q 0 gτ

−gτ 0 −q eτ
0 gτ eτ −q

⎞
⎟⎟⎟⎠ , (3.20)

where q = p, eτ = Fτ
√

p2
1 + p2

2/p, and gτ = Fτ p3/p. The eigenvalues of κ are easily obtained as

± ε
(η)
pτ = ±

√
g2
τ + (eτ + ηq)2 = ±

√
p2

3 +
(
Fτ + η

√
p2

1 + p2
2

)2

, (3.21)

where Fτ are defined in (2.5) or (2.2). Since the Hamiltonian is diagonalized, the thermodynamic
potential with 	 = 0, which is written as �F , can be easily obtained as

�F = 3
1

V

∑
p

∑
η=±

∑
τ=u,d,s

(ε
(η)
pτ − μ)θ(μ− ε

(η)
pτ )+ 1

2G
(F2

3 + F2
8 ), (3.22)

where the factor 3 represents the degree of freedom of color. Here, the sum with respect to the
momentum should be replaced by the integration of momentum: (1/V ) ·∑ p → ∫

d3 p. Hereafter,
we assume |Fτ | < μ because we are interested in the phase transition from the CFL phase to the SP
phase. In the case 0 ≤ Fτ < μ, the ranges of integration are obtained as:

for η = −1,

0 ≤ p⊥ =
√

p2
1 + p2

2 ≤ Fτ + μ, −
√
μ2 − (Fτ − p⊥)2 ≤ p3 ≤

√
μ2 − (Fτ − p⊥)2,

for η = 1,

0 ≤ p⊥ =
√

p2
1 + p2

2 ≤ μ− Fτ , −
√
μ2 − (Fτ + p⊥)2 ≤ p3 ≤

√
μ2 − (Fτ + p⊥)2.

(3.23)

In the case −μ < Fτ ≤ 0, the ranges of integration are obtained as:

for η = −1,

0 ≤ p⊥ =
√

p2
1 + p2

2 ≤ μ− |Fτ |, −
√
μ2 − (|Fτ | + p⊥)2 ≤ p3 ≤

√
μ2 − (|Fτ | + p⊥)2,

for η = 1,

0 ≤ p⊥ =
√

p2
1 + p2

2 ≤ |Fτ | + μ, −
√
μ2 − (|Fτ | − p⊥)2 ≤ p3 ≤

√
μ2 − (|Fτ | − p⊥)2.

(3.24)

Regardless of the sign of Fτ , positive or negative, Fτ is regarded as the absolute value of Fτ since
we consider both η = 1 and η = −1. Thus, from (3.22) and (3.23) or (3.24), the thermodynamic
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potential can be expressed similarly to Eqn. (29) in Ref. [11]:

�F = 1

2G
(F2

3 + F2
8 )

+ 3

2π2

∑
τ

[∫ μ−|Fτ |

0
dp⊥ p⊥

∫ √
μ2−(|Fτ |+p⊥)2

0
dp3

(√
p2

3 + (|Fτ | + p⊥)2 − μ

)

+
∫ μ+|Fτ |

0
dp⊥ p⊥

∫ √
μ2−(|Fτ |−p⊥)2

0
dp3

(√
p2

3 + (|Fτ | − p⊥)2 − μ

)]

= 1

2G
(F2

3 + F2
8 )

− 1

2π2

∑
τ

[√
μ2 − F2

τ

4
(3F2

τ μ+ 2μ3)+ Fτμ3 arctan

(
Fτ√

μ2 − F2
τ

)

− F4
τ

8
ln

(
(μ+√

μ2 − F2
τ )

2

F2
τ

)]
, (3.25)

where Fu = F3 + F8/
√

3, Fd = −F3 + F8/
√

3, and Fs = −2F8/
√

3. The simultaneous gap equa-
tions with respect to F3 and F8 are obtained through ∂�F/∂F3 = 0 and ∂�F/∂F8 = 0 as

∂�F

∂Fk
= Fk

G
− 1

2π2

∑
τ=u,d,s

(
2Fτμ

√
μ2 − F2

τ + μ3 arctan

(
Fτ√

μ2 − F2
τ

)

− F3
τ

2
ln

(
(μ+√

μ2 − F2
τ )

2

F2
τ

))
· ∂Fτ
∂Fk

= 0, (3.26)

where k = 3 or 8 and ∂Fu/∂F3 = 1, ∂Fd/∂F3 = −1, ∂Fs/∂F3 = 0, ∂Fu/∂F8 = 1/
√

3,
∂Fd/∂F8 = 1/

√
3, and ∂Fs/∂F8 = −2/

√
3. Inserting the solutions of the simultaneous gap equa-

tions above into the thermodynamic potential �F , we can estimate �F , which should be compared
with �0 in (3.17). By comparing (3.25) with (3.17), the realized phase is determined.

4. Numerical results

Let us calculate the thermodynamic potential�0 with Fk = 0 in (3.14) and�F with	 = 0 in (3.22)
or (3.25) numerically. If �F < �0, the SP phase is realized. However, in rather smaller μ, the CFL
phase should be realized. The numerical results are summarized in Table 1. We adopt the parameters
as � = 0.631 GeV, Gc = 6.6 GeV−2, and G = 20 GeV−2. As is seen in Table 1, in the region of
μ ≤ 0.45 GeV, �0 < �F is satisfied and the CFL phase is realized. At μ = 0.4558 GeV (= μc),
�0 ≈ �F is satisfied. Thus, the phase transition may occur. In the region ofμ ≥ 0.46 GeV,�0 > �F

is satisfied and the realized phase is the SP phase.
As for the solutions of the simultaneous gap equations in (3.26), it seems that the relation

F3 ≈ √
3F8 may be satisfied. If F3 = √

3F8, the relation Fd = Fs(= −2F3/3) is derived. In this
case, Fu = 4F3/3(= −2Fd). As for another case, for example, F3 = 0 and F8 �= 0, then Fu = Fd

and Fs = −2Fu are satisfied. So, another local minimum may be obtained at (F3 = 0, F8).
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Table 1. The thermodynamic potentials �0 with Fk = 0 and 	 �= 0, and �F with 	 = 0 and Fk �= 0 are
numerically given at each chemical potential μ.

μ/GeV 	/GeV �0/GeV4 F3/GeV F8/GeV �F/GeV4

0.40 0.042640 −0.0020336 0 0 −0.0019454
0.41 0.045135 −0.0022509 0.048509 0.028007 −0.0021481
0.42 0.047509 −0.0024845 0.098544 0.056895 −0.0023753
0.43 0.049748 −0.0027352 0.136983 0.079087 −0.0026327
0.44 0.051841 −0.0030034 0.170908 0.098674 −0.0029245
0.45 0.053774 −0.0032897 0.202345 0.116824 −0.0032542
0.4558 0.054817 −0.0034643 0.219828 0.126918 −0.0034643
0.46 0.055536 −0.0035947 0.232234 0.134080 −0.0036256
0.47 0.057116 −0.0039189 0.261119 0.150757 −0.0040423
0.48 0.058502 −0.0042627 0.289365 0.167065 −0.0045084
0.49 0.059681 −0.0046267 0.317255 0.183167 −0.0050277
0.50 0.060640 −0.0050113 0.345041 0.199210 −0.0056046

Fig. 1. The pressures for (	 �= 0, F3 = F8 = 0; CFL), (	 = 0, F3 �= 0, F8 �= 0); SP), and free quark gas (free)
are depicted as functions of the quark chemical potential μ.

Of course, the pressure pA can be expressed by the thermodynamic potential �A through the
thermodynamical relation:

pA = −�A. (4.1)

In Fig. 1, the pressures of the CFL phase and the SP phase are depicted as a function of the chemical
potential μ in comparison to that of the free quark matter. In μ < μc (μ > μc), the pressure of the
CFL phase is larger (smaller) than that of SP phase. Thus, the realized phase is CFL (SP) phase.

Also, the quark number density ρq can be derived from the thermodynamic potential by the
thermodynamical relation

ρq = −∂�
∂μ
. (4.2)

The baryon number density ρB can be expressed as ρB = ρq/3. In Table 2, we summarize the baryon
density and baryon density divided by the normal nuclear density ρ0 = 0.17 fm−3.

Finally, let us estimate the spin polarization. Here, we consider the helicity instead of spin. The
quark number density for the flavor τ and helicity η can be derived as

n(η)τ = 3
∫

d3 p
(2π)3

θ(μ− ε
(η)
pτ ), (4.3)
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Table 2. The pressures p0 with Fk = 0 and pF with 	 = 0 are numerically calculated. The corresponding
baryon number density ρB together with ρB/ρ0, where ρ0 represents the normal nuclear density, are given at
each chemical potential μ.

μ/GeV ρB(F = 0)/fm−3 ρB(F = 0)/ρ0 p0/GeV4 ρB(	 = 0)/fm−3 ρB(	 = 0)/ρ0 pF/GeV4

0.40 2.73681 5.36630 0.0020336 — — —
0.41 2.94752 5.77946 0.0022509 2.79121 5.47297 0.0021481
0.42 3.16606 6.20796 0.0024845 3.16045 6.19697 0.0023753
0.43 3.39217 6.65131 0.0027352 3.58384 7.02714 0.0016327
0.44 3.62561 7.10904 0.0030034 4.05631 7.95354 0.0029245
0.45 3.86614 7.58067 0.0032897 4.57688 8.97428 0.0032542
0.4558 4.00881 7.8604 0.0034643 4.90099 9.60978 0.0034643
0.46 4.11353 8.06574 0.0035947 5.14599 10.0902 0.0036256
0.47 4.36753 8.56379 0.0039189 5.76482 11.3036 0.0040423
0.48 4.62793 9.07438 0.0042627 6.43516 12.618 0.0045084
0.49 4.8945 9.59706 0.0046267 7.1594 14.038 0.0050277
0.50 5.16702 10.1314 0.0050113 7.94077 15.5701 0.0056046

where the factor 3 means color degree of freedom. First, in the case of Fτ being positive and
0 < Fτ < μ, the particle number density with helicity ±, n(±)τ> , can be calculated as

n(+)τ> = 3

2π2

∫ μ−Fτ

0
dp⊥ p⊥

∫ √
μ2−(Fτ+p⊥)2

0
dp3

= 1

4π2

[√
μ2 − F2

τ (F2
τ + 2μ2)+ 3Fτμ2 arctan

Fτ√
μ2 − F2

τ

− 3Fτμ2π

2

]
,

n(−)τ> = 3

2π2

∫ μ+Fτ

0
dp⊥ p⊥

∫ √
μ2−(Fτ−p⊥)2

0
dp3

= 1

4π2

[√
μ2 − F2

τ (F2
τ + 2μ2)+ 3Fτμ2 arctan

Fτ√
μ2 − F2

τ

+ 3Fτμ2π

2

]
. (4.4)

On the other hand, in the case −μ < Fτ < 0, the particle number density n(η)τ< is calculated as

n(+)τ< = 3

2π2

∫ μ+|Fτ |

0
dp⊥ p⊥

∫ √
μ2−(|Fτ |−p⊥)2

0
dp3

= 1

4π2

[√
μ2 − |Fτ |2(|Fτ |2 + 2μ2)+ 3|Fτ |μ2 arctan

|Fτ |√
μ2 − |Fτ |2

+ 3|Fτ |μ2π

2

]
,

n(−)τ< = 3

2π2

∫ μ−|Fτ |

0
dp⊥ p⊥

∫ √
μ2−(|Fτ |+p⊥)2

0
dp3

= 1

4π2

[√
μ2 − |Fτ |2(|Fτ |2 + 2μ2)+ 3|Fτ |μ2 arctan

|Fτ |√
μ2 − |Fτ |2

− 3|Fτ |μ2π

2

]
. (4.5)
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Fig. 2. The Fermi surface is depicted for Fτ > 0. In this case, the negative helicity dominates.

For the case Fτ > μ , there is no contribution to the spin polarization from ε
(+)
pτ due to the integration

range. Thus, we obtain only n(−)τ> :

n(−)τ> = 3
∫

d3 p
(2π)3

θ
(
μ− ε(−)pτ

)

= 3μ2

4π
Fτ . (4.6)

It should be noted here that the Fermi surface has the form of a torus in the case Fτ > μ, namely,

(

√
p2

1 + p2
2 − Fτ )2 + p2

3 = μ2, whose volume is obtained as 2πFτ × πμ2 where Fτ and μ corre-
spond to the major and minor radii of the torus. For the case Fτ < −μ, similar to Eqn. (4.6), we
obtain the following:

n(+)τ< = 3μ2

4π
|Fτ |. (4.7)

Next, let us consider the case |Fτ | < μ. The spin polarization per unit volume is obtained by the
difference between the quark number with the positive helicity and that with the negative helicity, as
shown in Fig. 2. Further, we assume that Fu > 0, Fd < 0, and Fs < 0. The spin polarization of each
flavor, Sτ , can be expressed as

Su/(�/2) = n(+)u> − n(−)u> = − 3

4π
Fuμ

2 . (4.8)

Similarly,

Sd/(�/2) = n(+)d< − n(−)d< = 3

4π
|Fd |μ2, Ss/(�/2) = n(+)s< − n(−)s< = 3

4π
|Fs |μ2. (4.9)

Of course, the total spin polarization S is written as

S = Su + Sd + Ss . (4.10)

Figure 3 shows the numerical results. For d- and s-quarks, the spin polarization has almost the
same magnitude. On the other hand, for the u-quark, the spin polarization is opposite to d- and
s-quarks. The total spin polarization is nearly equal to zero. The reason is as follows: From the
numerical calculation, the condensate F3 and F8 satisfy the relation F3 ≈ √

3F8, which makes the
thermodynamic potential a minimum. Under this relation, Fu = −2Fd and Fd = Fs are satisfied.
Thus, from (4.8)–(4.10), S = 0 is derived.

5. The order of phase transition and the second-order perturbation
with respect to VSP

In order to investigate the order of phase transition from CFL phase to SP phase, we treat the interac-
tion term VSP in the perturbation theory on the vacuum of the CFL phase. We neglect the contribution
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Fig. 3. The spin polarization of each flavor is depicted as a function of the quark chemical potential μ.

of the negative-energy particle represented by (c̃pτα, c̃†
pτα). Thus, in VSP in (2.7), it is enough to pick

up only the following term:

H1 =
∑
pητα

Fτ

√
p2

1 + p2
2

| p| c†
pηταc p−ητα =

∑
pητα

eτ c†
pηταc p−ητα,

eτ ≡ Fτ

√
p2

1 + p2
2

| p| . (5.1)

The correction of the first-order perturbation with respect to H1, namely 〈�|H1|�〉, vanishes
because the helicity η is different from each other like 〈�|d pη;ad†

p−η;a|�〉 = 0, which comes from

〈�|c†
pηταc p−ητα|�〉. Thus, we need to calculate the second-order perturbation with respect to H1.

The correction of energy can be expressed as

Ecorr =
∑

i

〈�|H1|i〉〈i |H1|�〉
E0 − Ei

, (5.2)

where |i〉, E0, and Ei represent the excited state, the vacuum energy, and the excited energies, respec-
tively. The term H1 includes c†

pηατ c p−ηατ . For example, in the case εp > μwith τ = u, the necessary
term can be expressed in terms of the quasi-particle operators (d pη;i , d†

pη;i ) such as∑
α

c†
pηαuc p−ηαu = c†

pη1uc p−η1u + c†
pη2uc p−η2u + c†

pη3uc p−η3u

=
[
x (1)p d†

pη;1 + x (2)p d†
pη;2 + x (3)p d†

pη;3 − (y(1)p d− pη;1 + y(2)p d− pη;2 + y(3)p d− pη;3)
]

×
[
x (1)p d p−η;1 + x (2)p d p−η;2 + x (3)p d p−η;3

− (y(1)p d†
− p−η;1 + y(2)p d†

− p−η;2 + y(3)p d†
− p−η;3)

]
+
(

X pd†
pη2u − Ypd− pη1d

)(
X pd p−η2u − Ypd− p−η1d

)
+
(

X pd†
pη3u − Ypd− pη1s

)(
X pd p−η3u − Ypd− p−η1s

)
. (5.3)

Therefore, the intermediate states |i〉 are needed:

|i〉 = | pηab〉 ≡ d†
pη;ad†

− p−η;b|�〉 (〈i | = 〈�|d− p−η;bd pη;a). (5.4)

Here, we remember that d pη;4 = d pη2u , and so on. We summarize the necessary pieces to calculate
the second-order perturbative correction of energy for εp > μ in Appendix B. Thus, for εp > μ, the
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second-order perturbative correction, E>corr, for the energy can be expressed as

E>corr =
∑
pηab

〈�|H1| pηab〉〈 pηab|H1|�〉
E0 − E pηab

= −
∑

pη(ε>μ)

{
(eu + ed + es)

2(x (1)p y(1)p )2

2
√
ε̄2 + 4	2

+ 1√
ε̄2 + 4	2 + √

ε̄2 +	2

[
(eu − ed)

2(x (2)p y(1)p

+ x (1)p y(2)p )2 + (eu + ed − 2es)
2(x (1)p y(3)p + x (3)p y(1)p )2

]

+ 1

2
√
ε̄2 +	2

[
(eu + ed)

2(x (2)p y(2)p )2

+ (eu − ed)
2(x (2)p y(3)p + x (3)p y(2)p )2 + (eu + ed + 4es)

2(x (3)p y(3)p )2
]

+ 1

2
√
ε̄2 +	2

[
(eu + ed)

2 + (eu + es)
2 + (ed + es)

2
]
(X pYp)

2
}
. (5.5)

As for the case εp < μ, the same results are derived. The intermediate states are adopted as

| pηab〉 = d̄†
− pη;ad̄†

p−η;b|�〉 . (5.6)

Then, the structure of operators in H1 for εp < μ is the same as that of the case for εp > μ. Thus,
the correction energy, E<corr, for εp < μ has the same form:

E<corr =
∑
pηab

〈�|H1| pηab〉〈 pηab|H1|�〉
E0 − E pηab

= −
∑

pη(ε<μ)

{
(eu + ed + es)

2(x̄ (1)p ȳ(1)p )2

2
√
ε̄2 + 4	2

+ 1√
ε̄2 + 4	2 + √

ε̄2 +	2

[
(eu − ed)

2(x̄ (2)p ȳ(1)p

+ x̄ (1)p ȳ(2)p )2 + (eu + ed − 2es)
2(x̄ (1)p ȳ(3)p + x̄ (3)p ȳ(1)p )2

]

+ 1

2
√
ε̄2 +	2

[
(eu + ed)

2(x̄ (2)p ȳ(2)p )2

+ (eu − ed)
2(x̄ (2)p ȳ(3)p + x̄ (3)p ȳ(2)p )2 + (eu + ed + 4es)

2(x̄ (3)p ȳ(3)p )2
]

+ 1

2
√
ε̄2 +	2

[
(eu + ed)

2 + (eu + es)
2 + (ed + es)

2
]
(X̄ pȲp)

2
}
. (5.7)

Finally, we obtain the correction energy by the second-order perturbation as

Ecorr = E>corr + E<corr. (5.8)
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Here, by using x (a)p , y(a)p , X p, Yp in (3.7), x̄ (a)p , ȳ(a)p , X̄ p, Ȳp in (3.8), eτ in (5.1), and Fτ in (2.2), and
by substituting the above quantities into Ecorr, we obtain

Ecorr = −2

⎛
⎝ ∑

p (ε>μ)

+
∑

p (ε<μ)

⎞
⎠ p2

1 + p2
2

| p|2
{

1√
ε̄2 + 4	2 + √

ε̄2 +	2

× 1

3

(
1 − ε̄2 + 2	2

√
ε̄2 +	2

√
ε̄2 + 4	2

)
·
(

F2
3 + F2

8

)

+ 1

2
√
ε̄2 +	2

· 	2

ε̄2 +	2

(
5

6
F2

3 + 19

12
F2

8

)}
. (5.9)

Then the thermodynamic potential � can be obtained up to the second order of VSP, namely, up to
the second order of Fk , as

� = �0 + 1

V
· Ecorr + 1

2G
(F2

3 + F2
8 ). (5.10)

The order of the phase transition from CFL to SP phases is determined through (5.9). Namely, from
(5.9) and (5.10), for the CFL phase, but with small F3 and/or F8, the thermodynamic potential � is
obtained as

� = �0 +
(

c3 + 1

2G

)
F2

3 +
(

c8 + 1

2G

)
F2

8 (5.11)

up to the second order of Fk . Here, c3 and c8 are expressed as

c3 = − 1

π2

∫ �

0
dp3

∫ √
�2−p2

3

0
dp⊥ p⊥

×
[

p2
⊥

| p|2
{

1√
| p|2 − 2μ| p| + μ2 + 4	2 +

√
| p|2 − 2μ| p| + μ2 +	2

× 1

3

(
1 − | p|2 − 2μ| p| + μ2 + 2	2√

| p|2 − 2μ| p| + μ2 + 4	2
√

| p|2 − 2μ| p| + μ2 +	2

)

+ 	2

2(| p|2 − 2μ| p| + μ2 +	2)3/2
· 5

6

}]
,

c8 = − 1

π2

∫ �

0
dp3

∫ √
�2−p2

3

0
dp⊥ p⊥

×
[

p2
⊥

| p|2
{

1√
| p|2 − 2μ| p| + μ2 + 4	2 +

√
| p|2 − 2μ| p| + μ2 +	2

× 1

3

(
1 − | p|2 − 2μ| p| + μ2 + 2	2√

| p|2 − 2μ| p| + μ2 + 4	2
√

| p|2 − 2μ| p| + μ2 +	2

)

+ 	2

2(| p|2 − 2μ| p| + μ2 +	2)3/2
· 19

12

}]
. (5.12)

If c3 + 1/(2G) > 0 and c8 + 1/(2G) > 0, the phase transition from CFL to SP phases is of the first
order because F3 = F8 = 0 always gives a local minimum of the thermodynamic potential�0. On the
other hand, if c3 + 1/(2G) > 0 and c8 + 1/(2G) < 0 and vice versa, or c3 + 1/(2G) < 0 and c8 +
1/(2G) < 0, the phase transition from CFL to SP phases is maybe of the second order. As is seen in
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Table 3. The coefficients of F2
3 (c3 + 1/(2G)) and F2

8
(c8 + 1/(2G)) are numerically given within the second-order
perturbation theory at each chemical potential μ.

μ/GeV c3 + 1/(2G) c8 + 1/(2G)

0.40 0.015734 0.0076297
0.41 0.015304 0.0068182
0.42 0.014873 0.0060047
0.43 0.014427 0.0051920
0.44 0.014015 0.0043828
0.45 0.013592 0.0035803
0.4558 0.0133487 0.0031934
0.46 0.013174 0.0027882
0.47 0.012765 0.0020104
0.48 0.012367 0.0012519
0.49 0.011982 0.00051816
0.50 0.116142 −0.00018406

Fig. 4. The pressure is depicted as a function of the baryon number density divided by the normal nuclear
density. The solid curve represents the realized phase.

Table 3, in the region of μ ≤ 0.49 GeV, and in particular at μ = μc (= 0.4558 GeV), the coefficients
c3 + 1/(2G) and c8 + 1/(2G) are positive. Thus, the phase transition may be of the first order.

From the above consideration, in Fig. 4 the pressure is depicted as a function of the baryon number
density divided by normal nuclear density, which has already given in Table 2. The realized phase is
represented by the solid curve.

6. Summary and concluding remarks

In this paper, it has been shown that quark spin polarization for each flavor may occur in the
three-flavor case at high baryon density, which leads to the quark spin-polarized phase, against the
color–flavor-locked phase due to the four-point tensor-type interaction between quarks in the Nambu–
Jona-Lasinio model. In a certain region of quark chemical potential, the CFL phase is favorable ener-
getically. However, as the quark chemical potential increases, the phase transition from CFL phase to
spin-polarized phase occurs. In our theoretical model, the phase transition occurs around the quark
chemical potential, being around 0.45 GeV under a certain parameter set. Based on the CFL phase,
we have treated the tensor-type interaction term between quarks as a perturbation one. As a result, it
has been shown that the phase transition may be of the first order up to the second-order perturbation.
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It has also been shown that, owing to the four-point tensor-type interaction, the spin polarization
may occur in the NJL model. The tensor-type interaction may come from the two-gluon exchange
term between quarks in QCD. It is interesting to clarify the origin of the tensor-type interaction. In
this paper, the total spin polarization is not realized, while the spin polarization with respect to each
flavor actually occurs. It may be important to introduce quark-mass splitting, namely, the strange
quark mass should be taken into account, while we have ignored it in this paper. Further, if the chiral
symmetry is explicitly broken, namely, the quark masses are not zero even in the chiral symmet-
ric phase, spin polarization originating from the pseudovector-type four-point interaction between
quarks may exist. One of next interesting problems may be to investigate the interplay between the
spin polarization from tensor-type interaction and that from the pseudovector-type interaction. As for
a realistic calculation of the inner core of neutron stars or quark stars, the charge neutrality condition
is important [16], and then the chemical potential of each quark flavor should be introduced. This
is one of the future problems we will consider, while we expect that the spin-polarized phase may
appear by the effects developed in this paper. Further, it is interesting to investigate the origin of the
strong magnetic field [17,18], for example, in the core of neutron stars. It is suggested that, in general,
spin polarization leads to the ferromagnetization. It is expected that the strong magnetic field exists
in the core of neutron stars. Then, if high-density quark matter is realized in the inner core of neutron
stars or quark stars, spin polarization may occur as is shown in this paper. Thus, one direction of
investigations in high-density quark matter is to understand whether the quark ferromagnetization is
realized or not in the quark spin-polarized phase. This will be one thing to solve.
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Appendix A. Mean field Hamiltonian without spin polarization in terms
of the quasi-particle operators

The mean field Hamiltonian, Heff, in (3.1) can be expressed in terms of the quasi-particle operators
dp:i , d†

p;i , d̄ p̄;i , and d̄†
p̄;i . The result is as follows:

Heff = H> + H< + V · 3	2

2Gc
,

H> = 1

2

∑
p (εp>μ)

(4ε̄2
pY 2

p + 4	X pYpφp)× 3

+ 1

2

∑
p (εp>μ)

[
ε̄p · 6(y(1)2p + y(2)2p + y(3)2p )+ 2	(−6x (1)p y(1)p + 2x (2)p y(2)p + 6x (3)p y(3)p )φp

]

+
∑

p (εp>μ)

{[
ε̄p · 3(x (1)2p − y(1)2p )+ 12	x (1)p y(1)p φp

]
d†

p;1dp;1

+
[
ε̄p · 2(x (2)2p − y(2)2p )− 4	x (2)p y(2)p φp

]
d†

p;2dp;2
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+
[
ε̄p · 6(x (3)2p − y(3)2p )− 12	x (3)p y(3)p φp

]
d†

p;3dp;3

+
9∑

a=4

[
ε̄p · (X2

p − Y 2
p)− 2	X pYpφp

]
d†

p;adp;a
}

+
∑

p (εp>μ)

{[
−6ε̄px (1)p y(1)p + 6	(x (1)2p − y(1)2p )φp

]
(d†

p;1d†
p̄;1 + dp̄;1dp1)

+
[
−4ε̄px (2)p y(2)p − 2	(x (2)2p − y(2)2p )φp

]
(d†

p;2d†
p̄;2 + dp̄;2dp2)

+
[
−12ε̄px (3)p y(3)p − 6	(x (3)2p − y(3)2p )φp

]
(d†

p;3d†
p̄;3 + dp̄;3dp3)

+
[
−2ε̄p X pYp −	(X2

p − Y 2
p)φp

]
× (d†

p2ud†
p̄1d + d†

p1dd†
p̄2u + dp̄1ddp2u + dp̄2udp1d + d†

p3ud†
p̄1s + d†

p1sd†
p̄3u

+ dp̄1sdp3u + dp̄3udp1s + d†
p3dd†

p̄2s + d†
p2sd†

p̄3d + dp̄2sdp3d + dp̄3ddp2s)

}
,

H< = 1

2

∑
p (εp<μ)

(4ε̄2
p X̄2

p − 4	X̄ pȲpφp)× 3

+ 1

2

∑
p (εp<μ)

[
ε̄p · 2(3x̄ (1)2p + 2x̄ (2)2p + 6x̄ (3)2p )+ 2	(6x̄ (1)p y(1)p − 2x̄ (2)p ȳ(2)p − 6x̄ (3)p ȳ(3)p )φp

]

+
∑

p (εp<μ)

{[
ε̄p · 3(ȳ(1)2p − x̄ (1)2p )− 12	x̄ (1)p ȳ(1)p φp

]
d̄†

p;1d̄p;1

+
[
ε̄p · 2(ȳ(2)2p − x̄ (2)2p )+ 4	x̄ (2)p ȳ(2)p φp

]
d̄†

p;2d̄p;2

+
[
ε̄p · 6(ȳ(3)2p − x̄ (3)2p )+ 12	x̄ (3)p ȳ(3)p φp

]
d̄†

p;3d̄p;3

+
9∑

a=4

[
ε̄p · (Ȳ 2

p − X̄2
p)+ 2	X̄ pȲpφp

]
d̄†

p;ad̄p;a
}

+
∑

p (εp<μ)

{[
−6ε̄p x̄ (1)p ȳ(1)p + 6	(x̄ (1)2p − ȳ(1)2p )φp

]
(d̄ p̄;1d̄p;1 + d̄†

p;1d̄†
p̄;1)

+
[
−4ε̄p x̄ (2)p ȳ(2)p − 2	(x̄ (2)2p − ȳ(2)2p )φp

]
(d̄ p̄;2d̄p;2 + d̄†

p;2d̄†
p̄;2)

+
[
−12ε̄p x̄ (3)p ȳ(3)p − 6	(x̄ (3)2p − ȳ(3)2p )φp

]
(d̄ p̄;3d̄p;3 + d̄†

p;3d̄†
p̄;3)

+
[
−2ε̄p X̄ pȲp −	(X̄2

p − Ȳ 2
p)φp

]
× (d̄ p̄2ud̄p1d + d̄ p̄1d d̄p2u + d̄†

p1d d̄†
p̄2u + d̄†

p2ud̄†
p̄1d + d̄ p̄3ud̄p1s + d̄ p̄1s d̄p3u

+ d̄†
p1s d̄†

p̄3u + d̄†
p3ud̄†

p̄1s + d̄ p̄3d d̄p2s + d̄ p̄2s d̄p3d + d̄†
p2s d̄†

p̄3d + d̄†
p3d d̄†

p̄2s)

}
.

(A1)

Substituting x (a)p and so on, we obtain the simple form in (3.12).
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Appendix B. Necessary matrix elements in the second-order perturbation theory

We collect the necessary pieces to calculate the second-order correction of energy, (5.2).

〈�|H1| pη11〉〈 pη11|H1|�〉 =
∑
p′η′

〈�|(−x (1)p′ y(1)p′ )(eu + ed + es)d− p′η′;1d p′−η′;1 · d†
pη;1d†

− p−η;1|�〉

×
∑
p′η′

〈�|d− p−η;1d pη;1(−x (1)p′ y(1)p′ )(eu + ed + es)d
†
p′η′;1d†

− p′−η′;1|�〉

= (x (1)p y(1)p )2(eu + ed + es)
2,

E0 − E11 = −2
√
ε̄2 + 4	2,

〈�|H1| pη12〉〈 pη12|H1|�〉 = (x (2)p y(1)p + x (1)p y(2)p )2(−eu + ed)
2,

E0 − E12 = −
√
ε̄2 + 4	2 −

√
ε̄2 +	2,

〈�|H1| pη13〉〈 pη13|H1|�〉 = (x (1)p y(3)p + x (3)p y(1)p )2(−eu − ed + 2es)
2,

E0 − E13 = −
√
ε̄2 + 4	2 −

√
ε̄2 +	2,

〈�|H1| pη22〉〈 pη22|H1|�〉 = (x (2)p y(2)p )2(eu + ed)
2,

E0 − E22 = −2
√
ε̄2 +	2,

〈�|H1| pη23〉〈 pη23|H1|�〉 = (x (2)p y(3)p + x (3)p y(2)p )2(−eu + ed)
2,

E0 − E23 = −2
√
ε̄2 + 4	2,

〈�|H1| pη33〉〈 pη33|H1|�〉 = (x (3)p y(3)p )2(eu + ed + 4es)
2,

E0 − E33 = −2
√
ε̄2 + 4	2,

〈�|H1| pη45〉〈 pη45|H1|�〉 = (X pYp)
2(eu + ed)

2,

E0 − E45 = −2
√
ε̄2 + 4	2,

〈�|H1| pη67〉〈 pη67|H1|�〉 = (X pYp)
2(eu + es)

2,

E0 − E67 = −2
√
ε̄2 + 4	2,

〈�|H1| pη89〉〈 pη89|H1|�〉 = (X pYp)
2(ed + es)

2,

E0 − E89 = −2
√
ε̄2 + 4	2. (B1)
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