151 research outputs found

    A novel ER export signal of STP transporters

    Get PDF
    Membrane trafficking is highly organized to maintain cellular homeostasis in any organisms. Membrane-embedded transporters are targeted to various organelles to execute appropriate partition and allocation of their substrates, such as ions or sugars. To ensure the fidelity of targeting and sorting, membrane proteins including transporters have sorting signals that specify the subcellular destination and the trafficking pathway by which the destination is to be reached. Here, we have identified a novel sorting signal (called the tri-aromatic motif) which contains three aromatic residues, two tryptophans and one histidine, for the plasma membrane localization of sugar transporters in the STP family in Arabidopsis. We firstly found that a C-terminal deletion disrupted the sugar uptake activity of STP1 in yeast cells. Additional deletion and mutation analyses demonstrated that the three aromatic residues in the C-terminus, conserved among all Arabidopsis STP transporters, were critical for sugar uptake by not only STP1 but also another STP transporter STP13. We observed that, when the tri-aromatic motif was mutated, STP1 was largely localized at the endomembrane compartments in yeast cells, indicating that this improper subcellular localization led to the loss of sugar absorption. Importantly, our further analyses uncovered that mutations of the tri-aromatic motif resulted in the endoplasmic reticulum (ER) retention of STP1 and STP13 in plant cells, suggesting that this motif is involved at the step of ER exit of STP transporters to facilitate their plasma membrane localization. Together, we here identified a novel ER export signal, and showed that appropriate sorting via the tri-aromatic motif is important for sugar absorption by STP transporters

    The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars

    Get PDF
    Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars

    Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice

    Get PDF
    Rice yield is greatly affected by environmental stresses such as drought and salinity. In response to the challenge of producing rice plants tolerant to these stresses, we introduced cDNA encoding the transcription factors DREB1A and DREB1B under the control of the stress inducible rd29 promoter. Two different indica rice cultivars were used, BR29, an improved commercially cultivated variety from Bangladesh and IR68899B, an IRRI bred maintainer line for hybrid rice. Agrobacterium mediated transformation of BR29 was done independently with DREB1A isolated from rice and Arabidopsis and DREB1B isolated from rice, whereas biolistic transformation was done with rice- DREB1B in the case of IR68899B. Initial genetic integration was confirmed by PCR and Southern blot analysis. Salinity tolerance was assayed in very young seedlings. Drought stress tests were found to be more reliable when they were carried out at the pre-flowering booting stage. RNA gel blot analysis as well as quantitative PCR analysis was performed to estimate the transcription level under stressed and unstressed conditions. Agronomic performance studies were done with stressed and unstressed plants to compare the yield losses due to dehydration and salt loading stresses. Noticeably enhanced tolerance to dehydration was observed in the plants transformed with DREB1A isolated from Arabidopsis while DREB1B was found to be more effective for salt tolerance

    Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions

    Get PDF
    Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that Oryza sativa CCCH‐tandem zinc finger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions

    Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of <it>Arabidopsis </it>microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones.</p> <p>Results</p> <p>We utilized such microarray data for prediction of <it>cis</it>-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent <it>cis</it>-regulatory elements with the aid of their feature of preferential appearance in the promoter region.</p> <p>Conclusions</p> <p>Our prediction of <it>Arabidopsis cis</it>-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.</p

    Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency

    Get PDF
    Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs) regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT) and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control) or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which regulate plant adaptation to high salinity as well as other environmental stresses

    A novel Arabidopsis

    No full text
    corecore