443 research outputs found

    Effect of lift force on the aerodynamics of dust grains in the protoplanetary disk

    Get PDF
    We newly introduce lift force into the aerodynamics of dust grains in the protoplanetary disk. Although many authors have so far investigated the effects of the drag force, gravitational force and electric force on the dust grains, the lift force has never been considered as a force exerted on the dust grains in the gas disk. If the grains are spinning and moving in the fluid, then the lift force is exerted on them. We show in this paper that the dust grains can be continuously spinning due to the frequent collisions so that the lift force continues to be exerted on them, which is valid in a certain parameter space where the grain size is larger than ~ 1 m and where the distance from the central star is larger than 1 AU for the minimum mass solar nebula. In addition, we estimate the effects of the force on the grain motion and obtain the result that the mean relative velocity between the grains due to the lift force is comparable to the gas velocity in the Kepler rotational frame when the Stokes number and lift-drag ratio are both ~ 1. This estimation is performed under the assumptions of the steady state and the isotropic spin angular momentum. We also estimate the mean relative velocity when the grains keep spinning and conclude that the lift force marginally affects the mean relative velocity in the minimum mass solar nebula. If there is a grain-concentrated part in the disk, the relative velocity due to the lift force may dominate there because of high collision rate.Comment: 9 pages, 4 figures. Accepted for publication in Earth, Planets and Spac

    Analysis of velocity profiles of blood flow in microchannels using confocal micro-PIV and particle method

    Get PDF
    The combination of computational and experimental investigations provides an excellent approach to understand complex phenomena involved at a microscopic level. This paper emphasizes a new experimental technique capable to quantify the flow patterns inside microchannels with high spatial and temporal resolution. This technique, known as confocal micro-PIV, consists of a spinning disk confocal microscope, high speed camera and a diodepumped solid state (DPSS) laser. Velocity profiles of physiological fluids were measured within different microchannels. The measured results agree reasonably well with the predicted analytical values. This new PIV system is a very promising technique to confirm the validity of the data obtained by numerical simulations, such as the MPS particle method

    Os métodos computacionais em hemodinâmica

    Get PDF
    Até à última década do século XX, a investigação realizada em hemodinâmica limitava-se, essencialmente, a estudos baseados em métodos experimentais e modelos matemáticos. No entanto, no final do século XX, os avanços tecnológicos na área da computação e o custo mais baixo de aquisição propiciaram uma nova forma de investigar os factores hemodinâmicos em termos fisiológicos e patológicos. Tal como tem acontecido em diversas áreas da ciência, os métodos computacionais constituem um complemento bastante promissor para investigar e analisar uma série de mecanismos fisiológicos e patológicos existentes nos vários órgãos do corpo humano. Este artigo trata, portanto, dos métodos computacionais em hemodinâmica e faz uma breve descrição do processo e da aplicação destes métodos no estudo do escoamento sanguíne

    Velocity measurements of physiological flows in microchannels using a confocal micro-PIV system

    Get PDF
    The detail measurements of velocity profiles of in vitro blood flow in micorchannels are fundamental for a better understanding on the biomechanics of the microcirculation. Despite the high amount of research in microcirculation, there is not yet any detailed experimental information about flow velocity profiles, RBCs deformability and aggregation in microvessels (diameter in the order of 100μm or less). These lack of knowledge is mainly due to the absence of adequate techniques to measure and quantitatively evaluate fluid mechanical effects at a microscopic level [1, 2]. During the years the most research work in this area has focused in experimental studies using techniques such as laser Doppler anemometry (LDA) or conventional particle image velocimetry (PIV). However, due to limitations of those techniques to study effects at a micro-scale level, Meinhart and his colleagues [3] have proposed a measurement technique that combines the PIV system with an inverted epi-fluorescent microscope, which increases the resolution of the conventional PIV systems [3]. More recently, considerable progress in the development of confocal microscopy and consequent advantages of this microscope over the conventional microscopes [4, 5] have led to a new technique known as confocal micro-PIV. This technique combines the conventional PIV system with a spinning disk confocal microscope (SDCM). Due to its outstanding spatial filtering technique together with the multiple point light illumination system, this kind of microscope has the ability to obtain in-focus images with optical thickness less than 1 μm, task extremely difficult to be achieved by using a conventional microscope. As a result, by combining SDCM with the conventional PIV system it is possible to achieve a PIV system with not only extremely high spatial resolution but also with capability to generate 3D velocity profiles. The main purpose of the present study is to evaluate the performance of our confocal micro-PIV system in order to investigate its ability to study the behaviour of non-homogenous fluids such as physiological fluids

    Confocal micro-PIV measurements of blood flow in microchannels

    Get PDF
    The detail measurements of velocity profiles of blood flow in microchannels are fundamental for a better understanding on the biomechanics of the microcirculation. It is therefore very important to obtain measurements with high accuracy and spatial resolution of the influence of the blood cells on the plasma flow behaviour. This paper presents and compares measurements of in vitro blood with different hematocrits within a square microchannel obtained by a confocal particle image velocimetry (PIV) system. This emerging technology by combining the conventional PIV system with a spinning confocal microscope has the ability to obtain not only high spatial resolution images but also three-dimensional (3D) optical sectioning velocity measurements. Velocity measurements of plasma seeded with 1 ~tm diameter fluorescent particles were performed at different locations along the depth of 100 ~tm square microchannel at a constant flow rate (0.15~tl/min) and Reynolds number (Re) of 0.025. By using our confocal micro-PIV system, it was possible to obtain time-series of instantaneous velocity profiles with high spatial resolution of 28.24 18.83 ~tm at time intervals of 5 ms between two images. The ensemble-averaged velocity results of blood flow with different hematocrits (up to 25%) have shown velocity profiles very close to a parabolic shape. However, by analysing the temporal variance of the instantaneous velocity profiles of different hematocrits, we have observed a substantial increase of the instantaneous velocity fluctuations by increasing the hematocrit within the plasma flow. Besides, some possible effects from the measurements accuracy and flow rate instabilities from the syringe pump, this observation also suggests that there is a direct correlation between the level of hematocrit and the temporal instantaneous velocity fluctuations

    Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel

    Get PDF
    A detailed measurement of the blood flow velocity profile in microchannels in vitro is fundamental to better understand the biomechanics of microcirculation. Therefore it is very important to determine the influence of suspended blood cells on the flow behaviour with high accuracy and spatial resolution. We measured the flow of blood cells suspended in a physiological fluid within a square microchannel using a confocal particle image velocimetry (PIV) system and compared it to pure water. This emerging technology combines a conventional PIV system with a spinning confocal microscope and has the ability to obtain high-resolution images and three-dimensional (3D) optical section velocity measurements. The good agreement obtained between the measured and estimated results suggests that macroscale flow theory can be used to predict the flow behaviour of a homogeneous fluid within a 100 μm square microchannel. Our results also demonstrated the potential of the confocal system for generating 3D profiles and consequently obtaining detailed information on microscale effects in microchannels using both homogeneous and non-homogeneous fluids, such as a suspension of blood cells. Furthermore, the results obtained from our confocal micro-PIV system show the ability of this system to measure velocities up to 0.52 mm s−1 in a blood cell suspension fluid

    In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles

    Get PDF
    A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-μm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements

    Determination of blood cells motions and interactions by a confocal micro-PIV system

    Get PDF
    The development of optical experimental techniques has contributed to obtain explanations on the way the blood flows through microvessels. Although the past results have been encouraging, detailed studies on the flow properties of blood in the microcirculation has been limited by several technical factors such as poor spatial resolution and difficulty to obtain quantitative detailed measurements at such small scales. In recent years, due to advances in computers, confocal microscopy, and digital image processing techniques, it has become possible to combine a micro-particle tracking velocimetry (PTV) system with a confocal microscope. The present study shows for the first time confocal micro-PTV measurements of the dynamic flow behaviour of red blood cells (RBCs) in concentrated suspensions. The measurements were performed at several depths of a 100 um glass capillarie

    Microscale flow dynamics of red blood cells in microchannels: an experimental and numerical analysis

    Get PDF
    Approximately, the half volume of the blood is composed of red blood cells (RBCs) which is believed to strongly influence its flow properties. Blood flow in microvessels depends strongly on the motion, deformation and interaction of RBCs. Several experimental studies on both individual and concentrated RBCs have already been performed in the past (Goldsmith 1971, Goldsmith and Marlow 1979, Chien et al. 1984, Goldsmith and Turitto 1986). However, all studies used conventional microscopes and also ghost cells to obtain visible trace RBCs through the microchannel. Recently, considerable progress in the development of confocal microscopy and consequent advantages of this microscope over the conventional microscopes have led to a new technique known as confocal micro-PIV (Tanaami et al. 2002, Park et al. 2004, Lima et al. 2006, 2007a). This technique combines the conventional PIV system with a spinning disk confocal microscope (SDCM). Due to its outstanding spatial filtering technique together with the multiple point light illumination system, this technique has the ability to obtain in-focus images with optical thickness less than 1 mm. In a numerical context, blood flow in large arteries is usually modeled as a continuum however this assumption is not valid in small vessels such as arterioles and capillaries. In this way, we are developing an integrative multi-scale model to simulate the blood flow at mesoscopic level. This computational approach may provide important information on the rheology of blood in small vasculatures where non-Newtonian property of blood is not negligible. The main purpose of this paper is to measure flow behavior of individual RBCs at different haematocrits (Hct) through a 75mm circular polydimethysiloxane (PDMS) microchannel by means of confocal micro-PTV system. Moreover we introduce an integrative multi-scale model to simulate the blood flow behavior through microvessels in order to obtain more detailed insights about the blood rhelogical properties at cellular level.This study was supported in part by the following grants: International Doctoral Program in Engineering from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), “Revolutionary Simulation Software (RSS21)” next-generation IT program of MEXT; Grants-in-Aid for Scientific Research from MEXT and JSPS Scientific Research in Priority Areas (768) “Biomechanics at Micro- and Nanoscale Levels,” Scientific Research (A) No.16200031 “Mechanism of the formation, destruction, and movement of thrombi responsible for ischemia of vital organs”, Grant-in-Aid for Young Scientists (A) 19680024
    corecore