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Abstract 
The detail measurements of velocity profiles of in vitro blood flow in microchannels is fundamental for a better 
understanding on the biomechanics of the microcirculation. It is therefore very important to obtain measurements 
with high accuracy and spatial resolution of the influence of the blood suspension cells on the flow behaviour. This 
paper presents and compares measurements of pure water and suspension of blood cells diluted in a physiological 
fluid within a square microchannel obtained by a confocal particle image velocimetry (PIV) system. This emerging 
technology by combining the conventional PIV system with a spinning confocal microscope has the ability to obtain 
not only high spatial resolution images but also three dimensional (3D) optical sectioning velocity measurements. 
The good agreement obtained between measured and estimated results suggests that macroscale flow theory can be 
used to predict the flow behaviour of a homogenous fluid within a 100 µm square microchannel. Our results also 
have demonstrated the potentiality of our system to generate 3D profiles and consequently to obtain detail 
information about micro-scale effects in microchannels by using both homogeneous and non-homogeneous fluids 
such as suspension of blood cells in the flow. Furthermore, our confocal micro-PIV system by employing the new 
scanning unit CSU-22, developed by Yokogawa, made it possible for the first time to measure successfully velocities 
up to 0.52 mm/s of a blood cell suspension fluid. 
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1. Introduction 
 
The phenomena of blood flow in microcirculation (microvessels with diameter less than 250µm) is 
characterized mainly by the red blood cells (RBCs) flow behaviour, which might be normal or 
pathological. Despite the high amount of research in microcirculation, there has not yet been any detailed 
experimental information about flow velocity profiles, RBCs deformability and aggregation in 
microvascular networks (Lee 2000, Mchedlishvili and Maeda 2001, Lipowsky 2005). This lack of 
knowledge was mainly due to the absence of adequate techniques with high spatial and temporal 
resolution to measure and quantitatively evaluate fluid mechanical effects at a microscopic level.  
 
During the years the most research work in this area has focused in experimental studies using optical 
techniques mainly because they are less invasive to measure the flow field when compared with other 
methods. One of the most popular optical technique is the particle-based flow velocimetry, where trace 
particles are seeded to the flow. In order to acquire and analyse the particle data there are several 
techniques such as laser Doppler velocimetry (LDV), particle streak velocity (PSV) and particle image 
velocimetry (PIV) (Sinton 2004). The most practical and commonly used method is the PIV method 
which is a well establish technique to measure macroscopic fluidics (Raffel et al. 1998). Recently, this 
technique has been successfully extended to micro-scale flows by combining the conventional PIV 
system with an inverted epi-fluorescent microscope (Santiago et al. 1998). This combination, known as 
micro-PIV, have greatly increased the resolution of the conventional PIV and as a result the micro-PIV 
technique have started to be widely used to investigate the flow behaviour in micro-fluidic devices. 
(Meinhart et al. 1999, Koutsiaris et al. 1999, Sugi et al. 2002, klank et al. 2002, Devasenathipathy et al. 
2003, Chiu et al.2003, Shinohara et al. 2004). However, by using conventional microscopes the entire 
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flow field is illuminated and consequently the out-of-focus emitted light can result in high levels of 
background noise which contribute to degrading the measured velocity fields (Meinhart et al. 1999, 
Meinhart et al. 2000, Nguyen and Wereley 2002).  
 
More recently, considerable progress in the development of confocal microscopy and consequent 
advantages of this microscope over the conventional microscopes (Pawley 1990, Wright and Wright 2002, 
Inoue and Inoue 2002, Amos and White 2003) have led to a new technique known as confocal micro-PIV 
(Tanaami et al. 2002, Kinoshita et al. 2005, Lima et al. 2005) or as confocal laser scanning microscopy 
(CLSM) micro-PIV (Park et al. 2004). This technique combines the conventional PIV system with a 
spinning disk confocal microscope (SDCM). Due to its outstanding spatial filtering technique together 
with the multiple point light illumination system, this kind of microscope have the ability to obtain in-
focus images with optical thickness less than 1 µm (optical sectioning effect), which is a task extremely 
difficult to be achieved by using a conventional microscope. As a result, by combining SDCM with the 
conventional PIV system it is possible to achieve a PIV system with not only extremely high spatial 
resolution but also with capability to generate 3D velocity profiles. Very recently, Park and his colleagues 
(Park etal. 2004) have compared his confocal micro-PIV with a conventional micro-PIV. This study has 
demonstrated that confocal micro-PIV system improves the particle image contrasts, definitions and 
accuracy of the velocity measurements. However, in their work they did not explore the optical sectioning 
capability to generate 3D velocity profiles and more importantly they have always carried out their 
experiments by using a homogenous fluid. According to our knowledge there has not yet been any study 
in the literature that evaluates the ability of a confocal micro-PIV system to investigate phenomena in a 
non-homogenous fluids such as fluids containing suspension of cells. It should also be noted that the 
system used by Park et al. had very high spatial accuracy but its temporal resolution was very low (up to 
120 frames per second) which limits the applicability of their system to study phenomena in 
microcirculation. In contrast, our system uses the new scanning unit CSU22, developed by Yokogawa, 
which enables to acquire confocal images up to 2000 frames per second. This new upgraded confocal 
micro-PIV system enables researchers to quantify the flow patterns inside microchannels with high spatial 
and temporal resolution. 
 
The aim of the present study is to evaluate the performance of our confocal micro-PIV system in order to 
investigate its ability to study the behaviour of a non-homogenous fluids within a square microchannel. In 
addition, the current work provides the first attempt to obtain 3D profiles from the optical sectioning 
capability of confocal micro-PIV systems.  
 
2. Materials and methods 
 
2.1. Working fluids 
 
It is general practice to use a well known Newtonian fluid to evaluate the performance of a new 
measurement technique. In this study pure water (PW) was used as our working reference fluid in order to 
analyse the performance of the confocal micro-PIV system. The flow measurements through the 
microchannel was conducted by seeding particles which follow the flow. These particles should scatter 
light efficiently and should be small enough when compared with the dimensions of the microchannel. 
However, to avoid Brownian motion the particles should be bigger than 500 nm (Santiago et al. 1998; 
Nguyen and Wereley 2002, Devasenathipathy et al. 2003). In this way, by selecting particles with a 
nominal diameter of 1µm we expect to reduce significantly the effect of Brownian motion.  
 
Two working fluids were used in this study. The first was PW seeded with 0.1% (by volume) of 1µm 
diameter red fluorescent solid polymer microspheres (R0100, Duke Scientific). A second fluid was Hanks 
solution (HS) seeded with 10% (by volume) of human blood and 0.1% (by volume) of 1µm diameter red 
fluorescent solid polymer microspheres (R0100, Duke Scientific). It should be mentioned that the blood 
was collected from the venous of a healthy addult and heparine was added into it in order to prevent 
coagulation of the blood cells. Moreover, the blood was hermetical stored at about 4ºC until the 
performance of the experiment at room temperature (27 ºC). 
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2.2. Square microchannel 
 
Rectangular microchannels have become a popular in vitro technique to study blood flow phenomena 
under physiological flow conditions. In addition, it is well known that laminar flow through this kind of 
channels generates a purely axial flow. As a result, it is common practice to evaluate the performance of a 
new measurement flow technique by using rectangular microchannels (Brown 2000, Meinhart et al. 1999, 
Kroll et al. 1996). However, in our study we have decided to use a 100 µm × 100 µm borosilicate glass 
square microchannel fabricated by Vitrocom as the flow behaviour is much closer to flow trough 
capillaries. A schematic of the tested square microchannel is shown is figure 2. The microchannel was 
mounted on a slide glass with thickness of approximately 120 µm which was immersed in pure water in 
order to minimize some possible refraction from the walls of the microchannel. 

 

Figure 1. Diagram showing the components of the square microchannel device.  
 
2.3. Confocal micro-PIV system and experimental setup 
 
Our system is a combination of a confocal spinning disk microscope with a conventional PIV technique. 
For simplicity we have adopted our system as confocal micro-PIV. This system is also known by some 
researchers as confocal laser scanning microscopy (CLSM) micro-PIV (Park et al. 2003).The confocal 
micro-PIV system used in our experiment consists of an inverted microscope (IX71, Olympus, Japan) 
combined with a confocal scanning unit (CSU22, Yokogawa, Japan) and a diode-pumped solid state 
(DPSS) laser (Laser Quantum Ltd, England) with an excitation wavelength of 532 nm. Moreover, a high-
speed camera (Phantom v7.1, U.S.A.) was connected into the outlet port of the CSU22 (see Figure 2). The 
microchannel was placed on the stage of the inverted microscope where the flow rate of the working fluid 
was kept constant at 0.15 µl/min by means of a syringe pump (KD Scientific Inc. U.S.A.). The Reynolds 
number used in our experiment was 0.014, whereas the entrance length (Le) was 65µm, considering 
Le=1.3×(width/2) (Fung 1997). As the measurements were conducted in the middle of the microchannel 
we have assured that velocity profiles were fully developed at the recording place. 
 
The laser beam was illuminated from below the microscope stage through an air immersion 20× objective 
lens with a numerical aperture (NA) equal to 0.75. Satisfactory illumination was achieved by seeding 
fluorescent particles with 1µm diameter, which absorb green light (absorbance peak 542 nm) and emit red 
light (emission peak 612 nm). The light emitted from the fluorescent flowing particles pass through a 
color filter into the scanning unit CSU22, where by means of a dichromatic mirror is reflected onto a high 
speed camera to record the PIV images. Although the camera used in this study can record images at a 
rate of 2000 frames/s the intensity of the images was too dark to be processed by the PIV data analysis, 
mainly due to low exposure time of the particles. For this reason and because of the complex fluid (PW 
with 10% of blood) used in our study we have decided to capture images with a resolution of 640×480 
pixels, 12-bit grayscale, at a rate of 200 frames/s with an exposure time of 4995 ms. By recording the 
images for a period of approximately 0.5s (100 images for each plane) at a rate of 200 frames/s the 
temporal resolution of the measurements was 5ms. After recording the images they were digitized and 
transferred to the computer in order to be evaluated using Phantom camera control software (PH607). The 
PIV images of the flowing particles were processed and the flow velocity was determined by using 
PivView version 2.3 (PivTec) (Rafael et al. 1998). The images were evaluated by a cross-correlation 
method, where time between two images was set to 20ms and 5ms for pure water and blood suspension 
fluid respectively. By using a multiple-pass interrogation algorithm with 24 by 16 pixel interrogation 
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window (vertical and horizontal overlap of 50%) which corresponds to a spatial resolution of 28.24µm × 
18.83µm, it was possible to obtain the correspondent velocity vector fields. 
 
The confocal micro-PIV system has the unique capability to acquire series of optical sections along z axis. 
In order to obtain the optical sectioned images we have used a three dimensional system (RT3D, 
Yokogawa) which comprises mainly a RT3D signal and low voltage piezoelectric translator (LVPZT) 
controller. By combining the RT3D system with CSU22 it is possible to generate optical sectioned 
images with a step size (distance between optical sections, Wright and Wright 2002) as small as 1µm 
under computer control. 

Table 1. Experimental parameters for the present study. 
Height × width × length of the 

microchannel 
100µm×100µm×50mm 

Flow rate 0.15 µl/min 
Reynolds number 0.014 
Particle diameter 1 µm 

Particle concentration (PW) 0.1% solids 
Particle concentration (HS 10%B) 0.1% solids 

 
Figure 2. Experimental set-up of the confocal micro-PIV system.. 

 
2.3.1. Spinning disk confocal microscope 
 
In a conventional microscope the entire depth or volume of the sample is continuously illuminated which 
leads to the detection of out-of-focus emitted light as well as light from the focal plane of interest. 
However, with a confocal microscope the sample is scanned with one or more very small spots that 
illuminate only the plane of focus at one time. In this way, due to the presence of suitable positioned 
confocal pinholes which act as a spatial filter, out-of-focus emitted light is removed and as a result 
improves the lateral and axial spatial resolution. This spatial filter is the key to create optical sectioning 
planes along the depth of the microchannel. In most of the cases, the confocal microscope is combined 
with a laser light source and scanning system in order to generate the entire field. By repeating a series of 
scans for multiple focal planes we can obtain at the end a 3D image of the specimen. (Pawley 1989, 
Wright 2002, Inoue 2002, Park et al. 2004). However, the conventional confocal microscopes uses a point 
scanning confocal system which requires several seconds to generate a full frame image. This is good 
enough to scan static specimens but is very slow to study microfluidics phenomena such as blood flow. 
One way to overcome this speed limitation is by using a spinning disk confocal microscope. This type of 
confocal microscope employs a spinning disk or Nipkow disk with several thousands of pinholes usually 
arranged in a helical pattern. Because the disk spins very rapidly (1800 rpm to 5000 rpm) it is possible to 
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capture images in real time which can be directly viewed by eyes or captured by high speed camera. In 
brief, the scanning method in CSU units developed by Yokogawa Electric Corporation consists of two 
disks connected together axially, where the upper disk has 20,000 micro-lenses and lower one, known as 
Nipkow disk, has also 20,000 matching pinholes with 50 µm in diameter. The excitation light that passes 
firstly through the micro-lenses is focused onto its corresponding pinhole and then progress down to 
illuminate the focal plane. Emitted fluorescent light from the focal plane is captured by the objective lens 
and focused back by the same path onto the Nipkow disk containing the pinhole array. Those pinholes 
remove the out-of-focus light and by means of a dichromatic mirror, located between the two disks, the 
treated emitted light from the focal plane is reflected onto a high speed camera to build up the image (see 
Figure 1). As the disks spin very rapidly, thousands of spots of light are scanned simultaneously across 
the focal plane within a very short time. This produces a very clean image for every video frame and can 
be directly viewed through eye (Wright 2002, Inoue 2002, Tanaani et al. 2002). The first CSU unit 
developed by Yokogawa was the CSU10 which operates with a fixed disk speed of 1800 rpm where up to 
120 full frame images can be acquired every second (Inoue 2002, Tanaani et al. 2002, Park et al. 2004). 
However, this scanning rate limits the applications of this type of confocal microscope to study high 
speed flows. In order to overcome this temporal resolution limitation Yokogawa just recently developed a 
new scanning unit known as CSU22. The CSU22 enables to choose rotation speed of the Nipkow disk 
from 1800 rpm to 5000 rpm and consequently it is possible to acquire confocal images up to 2000 frames 
per second (Inoue 2002, Tanaani et al. 2002). Another very remarkable innovation is the incorporation of 
a high speed objective lens actuator in order to capture in a very accurate way full frame optical-sectioned 
images along the depth of the microchannel (z axis). Note that, this new function can perform with sub-
micron z direction resolution and can be controlled via computer. In our experiment we have used this 
new outstanding scanning system in order to investigate blood fluid mechanics. 

 

 
Figure 3. Principle of the spinning disk confocal microscope. 

 
2.4. Spatial resolution and optical slice thickness of the confocal micro-PIV system 
 
As already mentioned, spatial filtering done by the pinholes apertures makes optical sectioning possible. 
This optical sectioning capability enables us to obtain a series of optical sections at different focal planes 
and as result it is possible to obtain 3D information about the spatial structure of the speciment. It is 
generally agreed that quality and accuracy of this information depends on the optical section thickness 
and also on the distance between optical sections (step size). According to Wright 2002, optical section 
thickness should be smaller than the step size (Wright and Wright 2002, Willhelm et al. 2003). In this 
way, when using a confocal micro-PIV system it is crucial not only determine the lateral and axial image 
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resolution but also the optical slice thickness. Note that for the case of the conventional micro-PIV system 
the out-of-plane is usually associated to the depth of field (Meinhart et al. 2000, Nguyen and Wereley 
2002, Shinohara et al. 2004) whereas in the confocal micro-PIV is related to the optical slice thickness. 
More detail information about the comparison between conventional and confocal micro-PIV systems can 
be found elsewhere (Park et al. 2004). 

 
Figure 4. Diagram showing the principle of optical sectioning for PIV measurements.  

 
Confocal microscopy is a well established technique for most biomedical research applications mainly 
because of its exclusive and unique optical sectioning capability. As a result, analytical expressions for 
spatial resolution using confocal microscopes are well developed by several researchers such as Inoue 
1989, Webb 1996 and Willhelm et al. 2003. One way to obtain lateral resolution, axial resolution and 
optical slide thickness is by using the concept of resolution probability proposed by Willhelm et al.. Table 
1 and 2 show the optical parameters used in the present study and the estimated spatial resolution and 
optical slice thickness using the equations presented in Appendix A. Note that a full description of the 
equations presented in the Appendix A can be found at Willhelm et al. 2003. 

 
Table 2. Optical parameters used in the present study. 

λex excitation wavelength 532 nm 
λem emission wavelength 612 nm 

Refraction index (n) 1 
Magnification (M) 20× 

Numerical aperture (NA) 0.75 
Airy unit (AU) 0.865 

Pinhole diameter (PD) 50 µm 
Modified pinhole diameter (MPD) 2.5µm 

 
Table 3. Spatial resolution and optical slice thickness of the confocal micro-PIV system. 

Lateral resolution (Rl) 0.36 µm 
Axial resolution (Ra) 1.4 µm 

Optical slice thickness (OST) 4.97 µm 
 

From the estimated results shown in Table 3 it is possible to verify that our system can achieve very high 
spatial resolution. For the case of optical slice thickness this parameter can be substantially reduced by 
increasing the magnification objective (M), NA and n. For instance, by using an oil immersion 60×-
0.9NA objective lens it is possible to obtain OST less than 1µm. However, in our study we have decided 
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to use an air immersion 20×-0.75NA objective lens mainly because it has higher working distance and 
provides a larger field of view and also stronger irradiance onto the light detector. As a result, it was 
possible to cover the entire width of our microchannel with high spatial resolution and also to obtain 
adequate quality images along the depth of the square microchannel.  
 
3. Results 
 
3.1. Performance of the confocal micro-PIV 
 
The confocal micro-PIV system was first evaluated by comparing the experimental results with a well 
establish analytical solution for steady flow through a long, straight and rigid rectangular microchannel, i. 
e., Poiseuille flow. In this study, a previously described analytical solution (Bruus, 2004) for a rectangular 
microchannel is used to compare with the experimental results from the confocal micro-PIV.  

 

Figure 5. Main parameters of the rectangular microchannel. 

 
By solving the Navier-Stokes equation with a constant pressure gradient along the rectangular 
microchannel and considering no-slip boundary conditions at the wall the velocity field can be expressed 
as : 
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This equation is extremely useful mainly when the flow rate is known which is the case of present work. 
As a result the analytical solutions were determined by considering the flow rate produced by the syringe 
pump of our experiment. Note that a short survey about how to obtain equation 1 is presented in 
Appendix B. A full description of this analytical solution can be found at Bruus, 2004. 
 
The determination of the experimental results in the centre plane (z = hz/2) of the microchannel was 
performed by using the RT3D system which has sub-micron z direction resolution. It should be noted that, 
the origin of the z axis (lower plate) was set where the fluorescent particles appeared to be almost static. 
 
Figure 6 shows a comparison between theoretical estimations from equation 1 and average fluid velocities 
of 20 PIV image pairs for a period 0.4s. The PIV measurements were obtained with an exposure time of 
4995 ms, magnification factor (pixel/µm) 0.85 and time delay of 20ms between two images. Note that 
these results where performed at the middle plane (50µm height) of the microchannel. According to the 
results shown in Figure 6, the averaged velocity data obtained from the confocal micro PIV 
measurements and analytical solution show very close agreement with errors less than 3%. In addition, 
Figure 6 also confirms that a parabolic Poisseuille flow develops along the square microchannel. 
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Figure 6.Comparison between experimental data and analytical solution at the centre plane(50µm height, Re=0.014). 

 
 

As already mentioned, the confocal micro-PIV system has the unique capability to acquire series of 
optical sections along z axis. In order to analyse the performance of the three-dimensional optical 
sectioning ability of our system, we have acquired images at several distances from the focal plane. As 
the theoretical optical slice thickness is approximately 5µm, by using a step size of 15µm we ensured that 
there is any overlap between the optical sectioned images. In Figure 7 the average velocity data are shown 
for several optical sectioned images along z axis. 
 

 
a)      b) 

Figure 7. Comparison between experimental data and analytical solution at several optical sectioned images along z 
axis; a) comparison at z = 35µm and z =65µm b) comparison at z = 20µm and z =80µm. 

 
The results shown in Figure 7a) show very close agreement (errors less than 6%) with some marginal 
deviations. However, at locations closer to the wall and far away from the focal plane (xy planes located 
at 30 µm from the centre plane) the deviations were more pronounced with errors from 10% to 13%.  
 
In order to evaluate the measurement accuracy along the time the temporal variance of the averaged 
velocities (Uavg) are shown in Figure 6 and 7. Around the middle plane the temporal variations were 
almost constant with values of about 2% to 4% of the time-averaged velocity. These results indicate the 
ability of our system to obtain high accurate measurements at the centre of the microchannel. On the other 
hand, near the wall the temporal variations were much higher with values around 0.021 mm/s which 
correspond of about 12% of the time-averaged velocity. This high variation demonstrates the complexity 
to obtain very accurate measurements closer to the wall due to some observed background noise 
presented at the recorded images. 
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The analytical solution, for a Newtonian fluid with low Re, within a square microchannel is characterized 
by one-dimensional flow. By considering the centre of the microchannel as the reference axis, the xy 
planes located at the same distance from the centre plane must have exactly the same velocities profile. In 
Figure 7 is possible to observe a fairly good agreement between the average velocity profile at the 
symmetric xy planes located at 15µm (z = 35µm and z = 65µm) and 30 µm (z = 20µm and z = 80µm) 
from the centre plane. 
 
3.2. Comparison of velocity profiles of pure water vs blood cells suspension  
 
As already mentioned, besides the employment of pure water in this study a physiological fluid 
containing of about 10% of suspended blood cells was also used. This non-homogenous fluid was 
selected mainly to evaluate the potentialities of our confocal micro-PIV system to investigate the flow 
behaviour of complex fluids such as in vitro blood flow.  
 
An example of a recorded image (halogen illumination source) of the physiological fluid used in our 
experiment is presented in Figure 8 a). In addition, Figure 8 b) shows a confocal image (laser emitted 
light) used to calculate the velocity field of this non-homogenous fluid. As a result Figure 8 shows the 
ability of our system to obtain images with just the fluorescent particles within the plasma flow.  

 
a)        b) 

Figure 8 a) Example of an image of the physiological fluid used in this experiment from a halogen illumination 
source. It is possible to observe both fluorescent particles as very small points (1µm)  and RBCs as dark-grey rings. 

b) Confocal image from the same physiological fluid where just fluorescent particles are visualized. 
 

 
a)       b) 

Figure 9. Comparison between 20 and 100 PIV images pairs a) pure water b) 10% blood cells suspension fluid. 
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In order to compare the velocity profiles of pure water and 10% of a blood cells suspension fluid it is very 
important to investigate the suitable amount of PIV image pairs required to analyse behaviour of both 
fluids. Figure 9a) shows the average velocities profiles of pure water for 20 and 100 PIV images pairs 
with a time delay of 5ms. For the case of pure water it is very clear that there is almost no difference 
between the two average velocity profiles which indicates that 20 PIV images pairs are enough to obtain a 
very reliable description of the flow of an homogenous fluid, such as pure water. However when we made 
an identical comparison but at this time using a non-homogeneous fluid containing about 10% of blood 
cells we have found a slightly difference between the average velocity profiles from 20 and 100 image 
pairs (see Figure 9b)). As a result, we believe that 100 PIV image pairs with a delay of 5ms will give a 
more reliable description of the flow behaviour of the non-homogenous fluid used in the present study. 
Since our main interest is to use the outstanding ability of our system to acquired images at several planes 
along the microchannel depth, by obtaining more than 100 PIV images in the middle plane it will increase 
the recording video time and consequently will compromise the measurements of the other planes. Hence, 
in order to compare the average velocities profiles of both fluids we have decided to use 20 PIV image 
pairs for pure water and 100 PIV image pairs for the cell suspension fluid with a time spacing between 
each pair of images of 5ms. 
 
Figure 9 also compares the temporal variation calculated form the instantaneous velocities of both fluids. 
An evident increase of the temporal variation of the cell suspension fluid indicates that there are some 
hydrodynamic disturbance effects into the flow behaviour of the trace particles caused mainly by the 
presence of blood cells in the flowing plasma. 
 
As a first result, Figure 10 shows the velocity vector fields of pure water and Hanks solution with 10% of 
blood, at different xy planes spaced 15µm in depth (z direction). 
 

 
a)       b) 

Figure 10. Velocity vector fields at different z positions of a) pure water and b) 10% of blood cells suspension 
fluid. 

 
From Figure 10a) the velocity profiles of pure water at several horizontal plane (xy axis) show clearly that 
at this region the flow is stable and fully developed. It is also shown, a close correspondence between the 
velocity patterns at symmetric xy planes located at 15µm and 30 µm from the centre plane. As expected 
the fluid velocity was highest within the centre of the microchannel whereas at regions very close to the 
walls the velocities were very small. For the case of the velocity profiles of the physiological fluid (see 
Figure 10b)) is possible to observe very small deviations between the symmetric planes. This becomes 
much clearer by analysing the 3D profiles shown in Figure 11. 
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a)      b) 

Figure 11. Three dimensional representation of optical sectioning velocity profiles of a) pure water and b) 10% of 
blood cells suspension fluid. The 3D profiles were generated from the several optical sectioned images along z 

axis measured by the confocal micro-PIV system. 
 
Although the previous ensemble-averaged velocity measurements are known to provide better accurate 
results in a homogeneous fluid (Santiago et al. 1998, Meinhart et al. 1999, Nguyen and Wereley 2002), 
when analysing a non-homogeneous fluid some detail information about the flow behaviour could be lost 
during the ensemble process. This is very clear by comparing the instantaneous velocity fields at the 
middle plane of both pure water and cell suspension fluid as shown in figure 12 a) and b). Although the 
instantaneous velocities from pure water have a nearly constant parabolic profile, the instantaneous 
velocities from the cell suspension fluid exhibit some clear irregularities in the velocity profile. As a 
result, figure 12b) clearly demonstrates the disturbance effect caused by the blood cells in the 
instantaneous velocity distribution of the plasma flow. These results are in agreement with the increase of 
the temporal variation of the cell suspension fluid, as shown in figure 9b).  
 

 
a) 

 
b) 

Figure 12. Instantaneous velocities of 2 PIV images pairs with a time delay of 5ms a) pure water b) 10% of blood 
cells suspension fluid. 
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4. Discusssion 
 
A very recent study done by Park et al. (Park etal. 2004) has shown, by using a homogenous fluid, the 
main advantages of the confocal micro-PIV over the conventional micro-PIV. In this present study it is 
shown the ability of the confocal micro-PIV system to obtain detail measurements of a non-homogenous 
fluid. Furthermore, due to the new Nipkow disk of Yokogawa, CSU-22, incorporated in our system, we 
have also shown for the first time the capability of the confocal micro-PIV system to measure velocities 
up to 0.52 mm/s by using a blood cells suspension fluid.  
 
The confocal micro-PIV measurements by using pure water as our working fluid have shown very good 
agreement when compared with the analytical solution. However, at locations closer to the wall and far 
away from the focal plane, the errors were slightly bigger than 10%. We believe that this error is mainly 
due to the increase of the degree of defocusing as one moves out of the ideal focus plane and to “second-
order-effects” such as surface roughness of the wall. Despite this slightly bigger deviations near the wall, 
the good agreement between micro-PIV measurements and predicted results from the centre planes gives 
a strong indication that the flow behaviour within 100µm microchannels does follow the macroscale flow 
theory, which reinforces the recent findings by Meinhart et al (Meinhart et al. 1999) and 
Devasenathipathy et al. (Devasenathipathy et al. 2003). The results shown here also reinforce the data 
obtained by Park et al. at a circular micro-tube. Additionally, our results show for the first time that the 
velocity profiles at symmetric xy planes agree fairly well with predicted Poiseuille profiles. As a result it 
is possible to conclude that our confocal micro-PIV system has the potentiality to generate three-
dimensional optical sectioning with high resolution within a range of 100µm.  
 
Besides the good agreement with the theoretical predictions, we have also shown that our system at the 
centre of the microchannel has high measurement accuracy with maximum temporal variations up to 4% 
of the time average velocity. However, it is also possible to observe an increase of the temporal variations 
near the wall of the microchannel. The main possible causes for these higher temporal variations are the 
increase of the image noise and the high particles diameter used in our experiment. We believe that the 
measurements close to the wall can be significantly improved by using 200nm diameter seeding particles 
(Meinhart et al. 1999). Note that the employment of 1µm diameter particles was mainly to avoid some 
possible Brownian motion associated with the low Re used in the present work.  
 
The combination of both optical and experimental parameters used to investigate the behaviour of the 
flow of a fluid containing suspended blood cells have shown to be a fairly good to obtain quantitative 
measurements specially at the centre of the microchannel. In fact, it was possible to obtain confocal 
images with just the fluorescent particles within the plasma whereas the blood cells around the particles 
were not captured as they had different emission wave lengths. We believe that the clear visualisation of 
the flowing particles within the suspended cells is mainly due to its ability to obtain extremely thin and 
in-focus images by means of its unique spatial filtering capability which greatly increase the emitted light 
and decrease the background noise from the focal plane of interest.  
 
From the comparison of the instantaneous velocities fields of both fluids, it was possible to observe that 
the velocities profiles from the cells suspension fluid exhibit some small fluctuations caused mainly by 
the presence of the blood cells within the plasma flow. These fluctuations are in agreement with the 
increase of the temporal variance of the cells suspension fluid. However, from the ensemble-averaged 
velocity measurements of the physiological fluid used in the present study, it was possible to observe only 
very slight deviations when compared with pure water. Hence, these results suggest that 10% of 
suspended blood cells have a relatively small effect in the plasma flow and that this physiological fluid 
behaves as a poiseuille flow. The reason for this behaviour is mainly due to the very small hematocrit 
used in this experiment. For instance, it was not possible to observe any plasma layer along the flow 
which is one of main factors contributing to the rheological behaviour of blood flow in microcirculation 
(Lipowsky, 2005, Mchedlishvili and Maeda 2001). Our results are in accordance with a very recent study 
carried out by Sugii and his colleagues (Sugii et al., 2005) where they have reported that in vitro blood 
with low hematocrit (21%) behaves as typical Newtonian fluid. However, their work was limited to 2D 
measurements in the middle of the microchannel. As can be seen from figures 10 and 11, by using our 
confocal micro-PIV system, it was possible to obtain fairly accurate velocity measurements at several xy 
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planes along the z direction and consequently obtain more detail information about the blood flow 
behaviour. According to a previous study done by Park and his co-workers (Park et al. 2004), by using a 
conventional micro-PIV system they have also obtained measurements along the depth of the 
microchannel, however the accuracy of the measurements was lower when compared with the confocal 
micro-PIV measurements. The lower accuracy from the conventional micro-PIV is believed to be mainly 
due to the incapability of the conventional microscopes to obtain true sliced images. 
 
In a very recent study performed by Park et al. they have used a confocal micro-PIV system with a 
temporal resolution up to 120 frames/s. This low temporal resolution has limited the applicability of their 
system in microfluidics. In contrast, our system by using the new scanning unit CSU-22 from Yokogawa, 
allows us to obtain images up to 2000 frames/s, which corresponds to a time resolution of 0.5ms between 
two pairs of images. Although this temporal resolution is possible to be achieved by using pure water, the 
intensity of the recorded images by using a blood cell suspension fluid was too dark to be processed by 
the PIV data analysis. By decreasing the temporal resolution to 200 frames/s and due to the consequent 
increase of the exposure time of the particles, we have successfully measured velocities up to 0.52 mm/s. 
As the velocities in microcirculation are usual from 0.2 mm/s up to 10 mm/s [Caro et al. 1978, Fung 
1997] our system is a very suitable measurement technique to study several phenomena occuring in 
microcirculation. 
 
It is evident from the present study that the disturbance effect caused by 10% of blood cells in the plasma 
flow is relatively small. An attempt to implement our confocal micro-PIV system to investigate the 
behaviour of in vitro blood with different hematocrits is in its initial stage and now facing some 
difficulties mainly due to the complex task to control the hematocrit through a microchannel. We expect 
that by combining the present microchannel with a soft lithography technique to be able to create a bypass 
flow circuit at the inlet port and as a result to obtain a constant hematocrit through the microchannel. 
 
Finally, although this system has the unique capability to acquire images at several distances from the 
focal plane, the 3D representation of the axial velocity is still under scope as in this work the velocities 
along the z direction are represented from linear relationships between the different optical sectioning 
velocity profiles. The 3D velocity profiles could be improved by combining our experimental data with 
some numerical methods.  
 
5. Conclusions 
 
The present study corresponds to the first attempt to obtain detail measurements of a non-homogenous 
fluid using a confocal micro-PIV system. This emerging technology is a combination of conventional PIV 
system with a spinning confocal microscope which provides high spatial resolution and 3D flow 
information. To evaluate the performance of our confocal micro-PIV system, we have investigated the 
behaviour of two different fluids within a square microchannel at several horizontal planes. The measured 
velocity profiles of pure water agree well with predicted Poiseuille profiles, which gives indication that 
microchannels with dimensions of order of 100 µm follow the macroscale flow theory. Moreover, the 
measurements of a physiological fluid containing 10% of suspended blood cells have demonstrated the 
ability of this system to obtain confocal images with just the fluorescent particles within the plasma 
whereas the blood cells were removed due to there different emission wave length. Although it was 
clearly observed some small fluctuations of the instantaneous velocities fields by comparing pure water 
with a 10% of suspended blood cells fluid, when the ensemble-averaged velocities were compared those 
results indicate that the local disturbance effect caused by the blood cells was not big enough to create 
significant non-linear effects within the plasma flow. In addition, the results obtain by our confocal 
micro-PIV system have not only shown the ability of this system to measure velocities up to 0.52 mm/s of 
a blood cell suspension fluid but also the potentiality to generate 3D profiles which allows us to obtain 
detail information of the flow behaviour within a 100um square microchannel. It should be also stated 
that this study showed that the confocal micro-PIV system is a very suitable technique to investigate 
several phenomena of in vitro blood flow in microcirculation. 
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Appendix A. Spatial resolution and optical slice thickness of the confocal micro-PIV system  
 
The image formed by point light at the focal plane is not an ideal point object, but instead the point is 
always distributed in a possible area on the image plane. As a result the image properties of the optical 
system can be described by the point spread function (SPF), which represents the light intensity 
distribution on the image plane. This distribution has higher probability at the center (higher light 
intensity) and lower probability at the outside (lower light intensity) (Willhelm et al. 2003). 
 
Resolution can be defined as the ability to distinguish two point objects form each other (Wright and 
Wright 2002). In confocal microscopy the pinhole plays an important role in calculating its spatial 
resolution. Considering that modified pinhole diameter (MPD) can be defined as the pinhole diameter 
(PD in µm) divided by the magnification (M), and that the airy unit (AU) by the following equation 
(Willhelm et al. 2003, Park et al. 2004) 
 

NA
AU exλ22.1

=            (A1) 

 

where λex is the wavelength of the illuminating laser light and NA is the numerical aperture of the 
microscopic objective lens; it is possible to determine the spatial resolution of our system by applying the 
following criterions: 
 
if MPD > 1.0 AU apply the geometric-optical analysis; 
if MPD < 0.25 AU  apply the wave-optical analysis (Willhelm et al. 2003). 
 
The confocal microscope system used in our experiment follows the geometric-optical analysis, as the 
MPD = 2.5 µm is bigger than the AU value (AU = 0.865). In this way by considering the geometric-
optical analysis it is possible to calculate spatial resolution of our system by applying the following 
equations (Willhelm et al. 2003) 
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where Rl is the lateral resolution, Ra is the axial resolution, OST is the optical slice thickness, λem is the 
emission wavelength and n the refractive index of immersion liquid.  
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Appendix B. Analytical solution for laminar flow in a rectangular microchannel 

By solving the Navier-Stokes equation with a constant pressure gradient along the rectangular 
microchannel and considering no-slip boundary conditions at the wall, it is possible to obtain following 
equation for the correspondent boundary conditions (Bruus, 2004) 
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where ux is the fluid velocity in the x direction, y and z are the directions normal to the flow, w is the 
width of the microchannel, µ is the fluid viscosity, L is the length of the microchannel and is the 

L
p∆  

pressure gradient. Furthermore by using Fourier series along the z direction it leads to the following 
velocity field equation as function of location within the cross section of the microchannel and apllied 
pressure gradient 
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In addition by double integration of equation B3 over the cross section, it leads to the correspondent flow 
rate (Q)  
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Finally by combining equations B3 and B4 it is possible to obtain a very useful expression to calculate the 
velocity profile for the Poiseuille flow in a rectangular or square microchannel. In this way the velocity 
field can then be expressed as: 
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