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Effect of lift force on the aerodynamics of dust
grains in the protoplanetary disk
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Abstract

We newly introduce lift force into the aerodynamics of dust grains in a protoplanetary disk. Although many authors
have investigated the effects of the drag force, gravitational force, and electric force on the dust grains, the lift force
has never been considered as a force exerted on dust grains in a gas disk. We show in this paper that the dust grains
can be continuously spinning as a result of the frequent collisions and that the lift force continues to be exerted on
them, which is valid in a certain parameter space where the grain size is larger than approximately 1 m and where the
distance from the central star is larger than 1 AU for the minimummass solar nebula. In addition, we estimate the
effects of the force on the grain motion and obtain results that show that the mean relative velocity between the
grains due to the lift force is comparable to the gas velocity in the Kepler rotational frame when the Stokes number
and lift-drag ratio are both approximately 1. This estimation is performed under the assumptions of steady state and
the isotropic spin angular momentum. We also estimate the mean relative velocity when the grains keep spinning
and conclude that the lift force marginally affects the mean relative velocity in the minimummass solar nebula. If
there is a grain-concentrated part in the disk, the relative velocity due to the lift force may dominate there because of
the high collision rate.
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Background
In the theory of planet formation, the issue concerning the
radial drift of meter-size dust remains an open question.
In a typical scenario, micrometer-size dust grains grow
to be kilometer-size planetesimals via collision and merg-
ing in a protoplanetary disk (Goldreich and Ward 1973;
Hayashi 1981). When the dust grain grows to be meter-
sized, there is velocity with respect to the disk gas and
losses in the angular momentum due to the drag force.
Thus, the grain falls down to the central star and cannot
grow further (Adachi et al. 1976; Brauer et al. 2008).
Various scenarios have been proposed for solving the

issue of meter-size dust. The gravitational instability in
the dust layer was investigated first (Goldreich and Ward
1973; Sekiya 1983). In this scenario, the dust grains set-
tle toward the mid-plane to form the dense layer, which
then fragments into precursors of the planetesimals. How-
ever, the sedimentation of the grains leads to vertical shear
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of the rotational velocity in the dust layer, which causes
turbulence due to the Kelvin-Helmholtz instability. As
a result, the grains cannot settle enough to form plan-
etesimals (Sekiya 1998). The effects of turbulence due to
magneto-rotational instability have also been considered
(Balbus and Hawley 1976; Sano et al. 2000). Collisions
between dust grains occur more frequently when there is
an increase of the relative velocity due to the turbulence,
so the growth rate of the grains also increases. Brauer
et al. (2008), Okuzumi et al. (2012), and Kataoka et al.
(2013) have taken into account these effects of the turbu-
lence, and while the first study has found that the dust
grains fall down to the central star if the grain density
is relatively large, the second and third ones have found
that the dust grains can grow at a sufficiently rapid rate
to avoid the issue of meter-size dust when the grains are
fluffy. As another scenario Youdin and Goodman (2005)
have suggested, the planetesimals may be formed by the
streaming instability caused by the interaction between
the dust grains and disk gas.
We newly introduce lift force as a factor affecting the

relative velocity between the dust grains. When a grain
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moves in fluid and when the fluid around the grain has
circulation, the lift force is exerted on the grain per-
pendicularly to the grain velocity, and this is generally
represented as

FL = CL · πr2d
md

· 1
2
ρg|�u|2 , (1)

where CL, rd,md, ρg, and �u represent the coefficient of the
lift force, the radius and the mass of the grain, the density
of the gas, and the velocity of a dust grain relative to the
disk gas, respectively. We note here that FL is defined as
the lift force per unit mass. The coefficient of the lift force
is determined by properties of the grain and flow. For a
rotating sphere, the lift force is expressed as

�FL = πρgr3d
md

�ωd × �u, (2)

where �ωd represents the vector of the angular velocity of
the grain. In Equation (2), Stokes law, which is valid when
the Reynolds number is small, is adopted as the drag law
(Rubinow and Keller 1961; Takagi 1974). In this case, the
coefficient of the lift force is represented as

CL = 2mdFL
πr2dρgu2

= 2rdωd
u

sin θ , (3)

where θ is the angle between �ωd and �u. When the
Reynolds number is so large that the turbulent flow is
dominant, and when the Knudsen number is so large
that the fluid cannot be regarded as a continuum, the
lift force has not yet been formulated. Therefore, in this
paper, we investigate the effects of the lift force only when
Equation (2) can be applied. We estimate the conditions
under which the lift force continues to be exerted on the
grain in the ‘Sustainability of the spin of the dust grains’
section. We derive and reduce an equation of motion for
the grain to estimate the relative velocity between the
grains in the ‘Relative velocity between the dust grains’
section. In the ‘Discussion’ section, we evaluate the rel-
ative velocity between the grains when the lift force is
kept exerted on the grains and discuss potential areas of
improvement for our model. Finally, we summarize our
study in the ‘Conclusions’ section.

Methods and results
Sustainability of the spin of the dust grains
In this section, we examine whether the dust grains keep
spinning in the gas disk because the lift force does not
act on non-spinning spherical objects. Here, we assume
that the collisions between the dust grains induce the spin
of the dust grains. The spinning dust is subjected to the
torque due to the friction created by the background vis-
cous fluid. After the spin-down timescale, the spin of the
dust would stop. We can estimate the collision time tcol
and the spin-down time tspin-down. By comparing these

timescales, we obtain the parameter space where the lift
force can act on the spinning dust grains. These timescales
depend on the disk structure.We adopt the parameters for
the disk structure in this paper as follows:

�g = �0R
−q
1 , (4)

�d = fd�g = fd�0R
−q
1 , (5)

cs =
√
kT
m

= cs,0R
−p
1 , (6)

�K =
√
GMs
R3 = �0R−3/2

1 , (7)

vK = R�K = �0R0R−1/2
1 , (8)

Hg =
√
2cs

�K
=

√
2cs,0
�0

R−p+3/2
1 , (9)

ρg = �g√
πHg

= �0�0√
2πcs,0

Rp−q−3/2
1 , (10)

where R is the semi-major axis, R0 is the typical radius of
the disk, R1 = R/R0, fd is the dust-to-gas mass ratio, m =
2.35mH is themean particle mass of gas, andMs = 1M� is
the mass of the central star. We use the isothermal sound
speed cs and themid-plane gas density ρg when estimating
timescales. If we choose �0 = 1.7 × 103 g cm−2, cs,0 =
1.0 × 105cm s−1, �0 = 2.0 × 10−7s−1, R0 = 1 AU, fd =
0.01, q = 3/2, and p = 1/4, the disk profile is similar to
the minimum mass solar nebula (MMSN; Hayashi 1981).

Collision timescale
The collision timescale is estimated as

tcol ∼ (nd · πr2d· < vd-d >)−1 , (11)

where nd and vd-d are the number density of the dust
grains and the relative velocity between the dust grains,
respectively. The parenthetic quantity < Q > represents
the statistical average.
The dust number density is expressed as

nd = �d
Hdmd

, (12)

where Hd is the scale height of the dust layer and md
is the mass of the dust grains. We approximate that the
mass distribution function of the dust is the delta func-
tion because it is necessary for the dust grains to collide
with similar scale grains so that the grains gain the angular
momentum. Considering the equilibrium between turbu-
lent diffusion and sedimentation (Birnstiel et al. 2010),Hd
is obtained as

Hd = Hg ·
(

α

St
1+2St
1+St2

)1/2
, (13)

where St ≡ �Kts is the Stokes number (ts is the stopping
time by drag force). We use alpha prescription νturb =
αcsHg to describe the strength of the turbulence in the
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protoplanetary disk and assume α < St to avoid the situ-
ation Hg < Hd. At the Stokes drag law regime, the Stokes
number is written as

St = md�K
6πrdρgν

= 2ρintr2d�K

3ρgcsλmfp
= 2σmolρint�0

3mcs,0
r2dR

p−3/2
1 ,

(14)

where ρint is the internal mass density of the dust grains,
ν = csλmfp/3 is the kinematic viscosity, and λmfp is the
mean free path of the gas particles. The mean free path is
estimated as λmfp = m/(σmolρg), where σmol is the cross
section of collisions between H2 molecules. We adopt
ρint � 3 g cm−3 and σmol � 2 × 10−15 cm2. Equation (14)
means that the Stokes number is independent of the nor-
malization coefficient of the surface density �0, which is
canceled out because of the one in λmfp.
Since the gas was assumed to be in a turbulent state

described by the alpha prescription, we set the mean rela-
tive velocity < vd-d >=< vd-d >t , where < vd-d >t means
the relative velocity between the grains in the turbulent
gas. According to (Ormel and Cuzzi 2007), < vd-d >t with
similar scale grains can be represented as

< vd-d >t= cs

⎛
⎜⎝ αSt√

1 + 1
4St

2(1 + St)2

⎞
⎟⎠

1/2

, (15)

where we smoothly interpolate the two limiting solutions
of St � 1 and St 	 1. This expression is valid when
the stopping time is larger than the turnover time of the
Kolmogorov-scale eddy. The minimum size of the grain
satisfying this condition is on the order of sub-millimeters
for MMSN at 1 AU; hence, we focus on grains larger than
approximately 1 mm in what follows.
Now we can express tcol as the function of rd and R1 by

using Equations (11) to (15) as

tcol = 4
√
2ρint

3�0�0fd
rdR

q+3/2
1 f (St), (16)

where

f (St) = 1
St

(
1 + 2St
1 + St2

)1/2 (
1 + 1

4
St2(1 + St)2

)1/4
.

(17)

We note that when α < St, tcol is independent of α

because the effect of increasing < vd-d >t balances the
one decreasing nd. For the case with St 	 1, the collision
timescale is tcol ∝ St−1r1dR

q+3/2
1 ∝ r−1

d R3+q−p
1 , while it is

tcol ∝ St−1/2r1dR
q+3/2
1 ∝ r0dR

2.25+q−0.5p
1 for the case with

St � 1. If we adopt the same parameters as MMSN, the
collision time is

tcol = 1.7 × 106f (St)R3
1rd,1 s, (18)

where rd,1 = rd/(1 cm).

Spin-down timescale
In the case of Stokes law, the angular momentum conser-
vation around the spin axis of a spherical grain is given as

Id
dωd
dt

= −8πρgνr3dωd, (19)

where Id is the moment of inertia of the grain. The torque
acting onto a spherical body by viscous fluid is given in
Rubinow and Keller (1961) and Takagi (1974). From this
equation, the tspin-down is estimated as

tspin-down = Id
8πρgνr3d

= ρintr2d
5ρgcsλmfp

= σmolρint
5mcs,0

r2dR
p
1.

(20)

In this second equation, we assume a spherical and uni-
form density grain whose moment of inertia is repre-
sented as Id = 2mdr2d/5. The spin-down time becomes
longer as the dust grain becomes larger. Here, we note that
the spin-down time is independent of�0 for the same rea-
son as the Stokes number [see Equation (14)]. For MMSN,
tspin-down is estimated as

tspin-down = 3.0 × 103r2d,1R
1/4
1 s. (21)

Comparison of timescales
Now, we can obtain the size of dust grains that are able
to keep spinning. We estimate these timescales just in the
Stokes law regime because the lift force in other regimes
is uncertain. There are two necessary conditions to real-
ize Stokes law. One is that the gas can be regarded as a
continuum medium, which is expressed as rd � 9λmfp/4.
The other is that the flow around the dust grains is lami-
nar, which is represented as Re= 2urd/ν � 20 (Shirayama
1992), where u is the relative velocity of the dust to the
gas. Here, we should actually include the effect of tur-
bulence in the expression of u as in Ormel and Cuzzi
(2007) so that the physical situation is consistent with
that of Equation (15). However, taking this effect into
account causes complicated equations. Thus, as a first-
step attempt, we assume that u is equal to the relative
velocity between the orbital velocity of the gas and the
Keplerian velocity, i.e., u = ηvK, where

η ≡ 2p + 2q + 3
4

(
cs
vK

)2
, (22)

which is given in (Adachi et al. 1976). By these conditions,
we find that our estimation is valid in the following range:

rd,min ≡ 9mcs,0
2σmol�0�0

Rq−p+3/2
1 � rd � rd,max

≡ 40
√
2πmR0

3(2p + 2q + 3)σmol�0
Rq+1
1 .

(23)
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For MMSN, this condition is simply written as

3.2R11/4
1 � rd,1 � 89R5/2

1 . (24)

Figure 1 shows the two timescales tcol (solid lines) and
tspin-down (dashed lines) at R1 = 1 for MMSN. We plotted
tcol and tspin-down in the range that satisfies the condi-
tion (24). From Figure 1, we can see that tcol is larger
than tspin-down, so that the spin of the dust would stop at
R1 = 1. The difference between the two timescales gets
smaller as the dust grains become larger. Equations (18)
and (21) show that large grains are likely to satisfy the con-
dition tcol < tspin-down. From Equation (24), the Stokes
regime can be adopted for the larger dust grains at the
outer region of the disk. Thus, we expect that the condi-
tion tcol < tspin-down is satisfied at the outer region R1 > 1.
Figure 2 shows the parameter space where the dust grains
keep spinning in the R1–rd plane for MMSN. The Stokes
regime is realized between the dashed green lines. The
condition tcol < tspin-down is satisfied above the solid red
line. In the blue region, the condition is satisfied with
the Stokes regime. There are dust grains that keep spin-
ning with the Stokes regime in R1 � 1.3. The grains that
can keep spinning have the size rd ∼ rd,max. The dotted
magenta line shows the dust radius when St = 1, which is
used in the ‘Discussion’ section.

Relative velocity between the dust grains
In this section, we investigate whether the mean relative
velocity is comparable to or greater than the gas velocity

in the Kepler rotational frame. Since this gas velocity is
comparable to the typical relative velocity between a large
grain and a small one compared to 1-m-sized dust, we
take it as a reference value. First, we derive the equation of
motion for a dust grain assuming that it moves at a termi-
nal velocity. Next, we estimate the mean relative velocity
by assuming an isotropic distribution for the spin angular
momentum.
Here, for simplicity, we assume that the dust grains

move on the mid-plane of the disk, which means that the
z-component of the lift force is assumed to be zero, where
the z-axis is taken as the disk axis, and we adopt the cylin-
drical coordinates described below. Since the direction
of the spin angular momentum can be taken arbitrarily,
the lift force can show the z-component. Nevertheless, we
neglect the z-component of the velocity to simplify the
calculation below.
For preparation to derive the equation of motion, we

express a projected vector of the lift force on the mid-
plane in terms of the direction of the spin angularmomen-
tum of a dust grain. Since the direction of the lift force
is perpendicular to the spin angular momentum and the
velocity of the grain with respect to the gas, then

�FL = A �ωd × �u, (25)

where the coefficient satisfies A = πρgr3d
md

(see the ‘Back-
ground’ section). Since the z-component of �u is zero,

Figure 1 rd dependence of tcol (solid lines) and tspin-down (dashed lines) at R1 = 1. tcol is always longer than tspin-down in the Stokes regime.
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Figure 2 Parameter space where the dust grains can keep spinning in the R1–rd plane. The Stokes regime is between the two dashed green
lines. The condition tcol < tspin-down is satisfied above the solid red line. The grains may keep spinning in the blue region. The dotted magenta line
represents the line where the condition St = 1 is satisfied.

the lift force vector projected on the mid-plane �FL,mid is
expressed as

�FL,mid = �FL ·
(�er
�eθ

)
= Aωdμ

(−uθ

ur

)
≡ FL

(−uθ /u
ur/u

)
,

(26)

where �e with a subscript and μ represent a unit vector in
the direction of the subscript and the cosine of the angle
between �ωd and the z-axis, respectively. We note here that
the FL values do not depend on the azimuth angle of the
spin angular momentum.
Next, we derive and reduce the equation of motion for

a dust grain. Now, the forces exerted on the dust grain are
the gravitational force of the central star, the drag force,
and the lift force, so the equation of motion is expressed as

d�v
dt

= −GM�
r2

�er − �FD + �FL,mid, (27)

where we assume that the mass of the central star is the
same as the solar one. As the first step for the reduction
of Equation (27), we divide it into two equations for the
r and θ components. Since the velocity of the disk gas
does not have the radial component, the components of
the velocity of the dust grain are represented as (ur ,uθ ) =
(vr , vθ − r�g), where �g is the orbital angular velocity of

the disk gas around the central star. Thus, Equation (27) is
expressed as

dvr
dt

− v2θ
r

= −GM�
r2

− FD
vr
u

− FL
vθ − r�g

u
, (28)

dvθ

dt
+ vrvθ

r
= −FD

vθ − r�g

u
+ FL

vr
u
. (29)

As the second step, we transform this into coordinates
rotating at the angular velocity of the Kepler rotation, that
is, vθ = vK + v′

θ . As the third step, we assume that the
motion of the dust grain is stationary and that |vr|, |v′

θ | 	
vK.
This stationary assumption may be invalid when taking

into account the timescales discussed in the ‘Sustainability
of the spin of the dust grains’ section. The stopping time
ts is represented as

ts = md
6πrdρgν

∼ 104 r2d,1R
1/4
1 ∼ 4 tspin-down. (30)

This means that the dust grain stops spinning before mov-
ing at the terminal velocity independently of the dust size
and the distance from the central star. Thus, as long as
the lift force is exerted on the grain, the motion of the
grain cannot reach a steady state. Alternatively, the grain
motion can be considered to be determined by the merger
of the parent grains (or scattering by the other grains).
Nevertheless, we assume that the grain motion reaches
the steady state for the first stage of this type of work.
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Finally, we non-dimensionalize the variables as

x = vr
ηvK

, y = v′
θ

ηvK
, gD = FD

u�K
, gL = FL

u�K
, (31)

where η is the constant satisfying the equation r�g =
vK(1 − η) and �K is the angular velocity of the Kepler
motion. Thus, we obtain two algebraic equations:

2y = gDx + gL(y + 1), (32)
1
2
x = −gD(y + 1) + gLx. (33)

These equations represent the balance between the
Coriolis, drag, and lift forces.
The solution of the equations is

x = −2gD
g2D + (gL − 2)(gL − 1/2)

, (34)

y = −1 + −2(gL − 1/2)
g2D + (gL − 2)(gL − 1/2)

. (35)

Here, Equations (26) and (31) lead to gL = gL,maxμ, where
gL,max ≡ Aωd

�g
, and we introduce the lift-drag ratio RLD ≡

gL,max/gD to obtain gL = gDRLDμ. Thus, x and y are
expressed as functions of μ, gD, and RLD. We show x(μ)

and y(μ) in Figure 3. Here, we assume gD = 1 and RLD = 1
as trial values.

Since x = −1 when we neglect the lift force, the curve
of x(μ) shows that the radial velocity of the dust grain can
be a third or four times of that without the lift force. On
the other hand, when μ < 0, y is almost constant and
comparable to that without the lift force. When μ is larger
than 0.5, y is smaller than −1, which means that the dust
grain orbits more slowly than the gas. In addition, we see
that x and y decrease as μ is close to unity. Therefore,
the absolute value of the velocity tends to increase as μ

increases.
Next, we calculate the average and dispersion of the

velocity of the dust grain on the disk mid-plane, assum-
ing that the spin angular momentum is isotropic, which is
just for simplicity. Thus, the direction distribution satis-
fies f (�) = 1

4π , which is equivalent to f (μ) = 1
2 , where �

is a solid angle parameter. The average and dispersion of x
are calculated by performing the integration below.

< x > =
∫

xf (x)dx

= 1
2

∫ 1

−1
x(μ)dμ,

< x2 > =
∫

x2f (x)dx

= 1
2

∫ 1

−1
x2(μ)dμ,

(36)

Figure 3 Dependence of the grain velocity on the direction of the spin angular momentum.We show the grain velocity in the radial direction
x (the solid line) and in the azimuthal direction y (the dashed line). The variable μ represents the cosine of the angle between the spin angular
momentum and z-axis . We take the parameters as gD = 1 and RLD = 1.
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where we transform the integration variable into μ. We
also can derive the same expression for y,

< y > = 1
2

∫ 1

−1
y(μ)dμ,

< y2 > = 1
2

∫ 1

−1
y2(μ)dμ.

(37)

By taking gD = 1 and RLD = 1, we can obtain the approx-
imate value of the average and standard deviation of the
velocity,

< x > � −1.4, (38)
< y > � −1.2, (39)√
< x2 > � 1.0, (40)√
< y2 > � 0.6, (41)

< wrel >≡
√

< x2 > + < y2 > � 1.2. (42)

Equation (38) means that the dust grains, on average, fall
down to the star faster than without the lift force. More-
over, Equation (39) means that their average orbit is at
almost the same velocity as the gas. We note that the
standard deviation of the velocity represents the aver-
age of the relative velocity between the grains. Therefore,
Equation (42) means that the average relative velocity
exceeds the relative velocity between the gas and Kepler
velocity, so that the collision rate is affected by the lift
force when gD = 1 and RLD = 1.
We finally calculate the averaged relative velocity on the

disk mid-plane < wrel > for arbitrary values of gD and
RLD. Figure 4 shows the contour lines of < wrel > = 1
(the solid line) and 0.1 (the dashed line) on the gD–RLD
plane. We see that the relative velocity is large when gD
is small and when RLD is large, which corresponds to the
situation where the lift force is efficiently exerted on the
grains. The important fact is that there exists a region sat-
isfying < wrel >> 1, where the lift force non-negligibly
affects the dynamics of the system of grains, compared to
the case without the force.

Discussion
Lift-drag ratio
In this subsection, we estimate the lift-drag ratio RLD to
investigate how efficiently the lift force affects the motion
of the dust. In the Stokes regime, the lift coefficientCL and
drag coefficient CD are represented as

CD = 4csλmfp
rdu

, (43)

CL = 2mdFL
πr2dρgu2

= 2rdωd
u

sin θ . (44)

The lift coefficient depends on the spin angular veloc-
ity ωd of the dust. Here, we estimate ωd induced by the

collisions of the grains. When two grains with the same
mass md collide with the impact parameter b, the angular
momentum around the center of mass is represented by

L = bvd-dmd
2

. (45)

Given the weight by a cross section, we derive the
averaged angular velocity

√
< L2 > as

√
< L2 > =

(∫ 2rd
0 L22πbdb∫ 2rd
0 2πbdb

)1/2

= 1√
2

< vd-d > rdmd.

(46)

If we assume that the grain obtains the mass 2md and
this angular momentum after the collision, the resultant
angular velocity ωd is represented as

ωd = 5
√
2

4
< vd-d >

rd
. (47)

Using Equations (43), (44), and (47), we can reduce the
lift-drag ratio RLD as

RLD = CL
CD

= 5
√
2rd < vd-d >

8csλmfp
. (48)

Furthermore, we adopt < vd-d >=< vd-d >t , so that
this expression is nearly independent of the dust radius
rd for St > 1. For St � 1, the lift-drag ratio approaches
asymptotically to a maximum,

RLD � 20α1/2R−17/8
1 , (49)

where we take the MMSN disk parameters.
We see from Figure 2 that when rd is approximately

102 cm at R1 ∼1, which corresponds to gD = St−1 ∼0.1,
then the conditions where tcol ∼ tspin-down and the drag
force is represented with Stokes law are marginally satis-
fied. In this case, we find RLD of approximately 2.0 when
α = 0.01 using Equation (49). Thus, from Figure 4, we
obtain < wrel >∼0.1, which means that the averaged rel-
ative velocity due to the lift force is a tenth of ηvK for the
1-m-sized dust at 1 AU from the central star.

Dependence of the relative velocity on disk parameters
The situation stated in the previous subsection can be
qualitatively or quantitatively changed by adopting disk
parameters different from MMSN. If we take an fd larger
than 0.01, as proposed in Sekiya (1998) and Hasegawa and
Tsuribe (2014), the averaged relative velocity< wrel > can
be approximately 1. The dust-to-gas ratio fd is included
just in the expression of tcol [Equation (16)], so that a
larger fd means a smaller tcol and thereby smaller rd sat-
isfying tcol = tspin-down. This implies that the red line in
Figure 2 moves down and that the blue region expands
inside. When fd is approximately 0.1, the blue region
includes the dotted magenta line, which shows the grain
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Figure 4 Contours of the averaged relative velocity of the grains are shown on the gD–RLD plane. The solid and dashed lines represent
< wrel >= 1 and 0.1, respectively.

size satisfying St = 1 at R1 ∼0.5. Since RLD is approxi-
mately 1 when α = 10−4, we find from Figure 4 that the
relative velocity < wrel > is approximately 1. In this case,
the relative velocity due to the lift force ηvK < wrel >

is approximately 60 m s−1, where we note that ηvK does
not depend on R1 when p = 1/4. This value exceeds the
relative velocity due to the turbulence < vd-d >t∼8 m
s−1, which is computed with Equation (15). Therefore, the
lift force is expected to efficiently affect the growth rate
of the grain whose size is 10 cm at R1 ∼0.5 if there is a
grain-concentrated part.
Recently, a steeper density profile, which is denser at 1

AU, has been proposed (Desch 2007). When the density
profile is steeper, a larger q is adopted. If q is larger, the
radial profile of the minimum and maximum sizes of the
grains is steeper [Equation (23) and dashed green lines
in Figure 2]. Moreover, we can find that the red line in
Figure 2 does not change as much as the green lines by
comparing Equation (16) to (20). Thus, the blue region
in Figure 2 slightly shifts to the inner region. Therefore,
we expect that when the density profile is steeper with
the normalization coefficient fixed, the innermost radius
where the lift force continues to be exerted on the grains
slightly decreases close to R1 = 1.
Suppose that the disk has a larger surface density.

Spin-down time [Equation (20)] and Stokes number
[Equation (14)] are independent of the surface density �0.

Conversely, collision time is inversely proportional to �0
[Equation (16)], so that rd satisfying tcol = tspin-down is
proportional to �

−1/2
0 for St � 1. Additionally, rd,min and

rd,max in Equation (23) are inversely proportional to �0.
Therefore, the blue region moves outside and the mini-
mum grain size in the blue region is nearly unchanged.
The ratio RLD becomes smaller with decreasing R1, so that
the relative velocity due to the lift force is smaller than that
for the fiducial surface density.

Model refinement for other effects
We can refine the model in this paper by taking into
account realistic porosity and shape of the dust grain
(Suyama et al. 2008). If the grain is fluffy, ρint is smaller
than the value we used in the ‘Sustainability of the spin of
the dust grains’ section. Equations (14), (18), and (17) lead
to the dependence of tcol on ρint,

tcol ∝
{

ρ
1
2
int forSt � 1

ρ0
int forSt 	 1,

(50)

while tspin-down ∝ ρ1
int. Thus, when ρint decreases,

tspin-down decreases more rapidly than tcol, which means
that the lift force is exerted on the grain over a shorter
period of time. If the grain is lumpy, the coefficient of lift
would become as large as a baseball or a golf ball.
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It is also worth taking into account realistic collision
processes between the grains, such as simple scattering
(bouncing), minor merger, and destruction. Through the
simple scattering, the grain may gain the spin angular
momentum by means of surface friction, where the maxi-
mum surface velocity of the scattered grains is vd-d, which
is less than the mean surface velocity in the case of the
major merger [Equation (47)]. In addition, in the case of a
minor merger, which is realized when we consider the size
distribution of grains (Windmark et al. 2012), the grains
obtain less spin angular momentum compared to the case
of the major merger. Thus, we expect less mean relative
velocity when the grains undergo the scattering andminor
merger. On the other hand, if the destruction (fragmen-
tation) occurs when the grains collide, the grains may
gain larger spin angular momentum. The experiments
show that agglomerates (centimeter to decimeter size) are
divided into many fragments that are of millimeter to cen-
timeter size through low-velocity collisions (Deckers and
Teisere 2012; Schräpler et al. 2012). If these fragments
have a large spin angular momentum, they can be suffi-
ciently affected by the lift force. How much spin angular
momentum grains gain depends on many parameters, but
we will defer this question to future work.
The z-component of the lift force, which is omitted in

this paper, may affect the resultant relative velocity of
the dust grain. The equation of motion in the z-direction
includes the gravitational force by the central star, the drag
force, and the lift force. Although the steady state can-
not be realized because the gravitational force depends
on the altitude from the disk mid-plane, the dust grains
should gain a momentum in the z-direction. This causes
an increase in the absolute value of the velocity, whichmay
result in an increase in the relative velocity.

Conclusions
In this paper, we investigated the effects of the lift force
on dust grains in a protoplanetary disk from two perspec-
tives. We first investigated whether the lift force is kept
exerted on the grains or not. We assumed the grains are
in the minimum mass solar nebula where the turbulence
develops. We estimated the collision timescale and the
spin-down timescale and found that the grain keeps spin-
ning as a result of collisions with the other grains if the
radius of the grain is larger than 100 cm at � 1 AU from
the central star.
Next, we calculated the mean relative velocity between

the grains caused by the lift force. The grains obtain spin
angular momenta with various directions by collisions
between themselves, so that the lift forces exerted on them
have various directions as well. Thus, the relative veloc-
ity yields between the grains. We assumed that the grains
are in the steady state and that the distribution of their
spin momenta shows the isotropy. We then showed that

the mean relative velocity is comparable to the gas veloc-
ity at the Kepler rotational frame when FL � FD and
ts ≈ 1/�K, where FL, FD, ts, and�K are the lift force, the
drag force, the stopping time of the grains by the drag, and
the Kepler angular velocity, respectively. This means that
the lift force can sufficiently affect the collision rate, which
affects the growth rate of the grains under the parameter
set.
We also estimated the mean relative velocity when the

grains keep spinning by combining the above two results.
We found that for the minimum mass solar nebula, the
mean relative velocity due to the lift force is smaller than
the gas velocity at the Kepler rotational frame. We present
the mean relative velocity as being comparable to the gas
velocity if the disk has grain-concentrated parts where the
dust-gas ratio is ten times larger than MMSN, so the lift
force may affect the collision rate in the parts.
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