129 research outputs found

    Solubilization of single-walled carbon nanotubes by entanglements between them and hyperbranched phenolic polymer

    Get PDF
    金沢大学理工研究域物質化学系Hyperbranched phenolic polymer (HBP) was prepared by Lewis acid-catalyzed polycondensation of bifunctional phenolic monomer with trifunctional phenolic monomer. By choosing an appropriate Lewis acid, HBP was successfully obtained. By using physical adsorption of HBP on a single-walled carbon nanotube (SWCNT) surface, solubilization of SWCNTs was examined. SWCNTs were soluble with extended branches of HBP in N,N-dimethylformamide (DMF) solution, while they were insoluble in a linear phenolic polymer. In the presence of shrinking branches of HBP in tetrahydrofuran, SWCNTs were hardly soluble. Entanglements between extended branches of HBP and SWCNT in DMF solution resulted in high solubility of SWCNTs. © 2008 Elsevier Ltd. All rights reserved

    Hydrophobic silica aerogel production at KEK

    Full text link
    We present herein a characterization of a standard method used at the High Energy Accelerator Research Organization (KEK) to produce hydrophobic silica aerogels and expand this method to obtain a wide range of refractive index (n = 1.006-1.14). We describe in detail the entire production process and explain the methods used to measure the characteristic parameters of aerogels, namely the refractive index, transmittance, and density. We use a small-angle X-ray scattering (SAXS) technique to relate the transparency to the fine structure of aerogels.Comment: To be published in Nucl. Instr. and Meth. A, 9 pages, 10 figures, 1 tabl

    Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death

    Get PDF
    Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-β (Aβ)–induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Aβ, and Aβ-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease

    Antiangiogenic agent sunitinib induces epithelial to mesenchymal transition and accelerates motility of colorectal cancer cells

    Get PDF
    Although vascular endothelial growth factor receptor (VEGF-R)-targeted antiangiogenic agents are important treatment for a number of human malignancies, there is accumulating evidence that the therapies may promote disease progression, such as invasion and metastasis. How tumors become to promote their evasiveness remains fully uncertain. One of possiblemechanisms for the adaptationmay be a direct effect of VEGF-R inhibitors on tumor cells expressing VEGF-R. To elucidate a direct effect of VEGF-R-targeting drug (sunitinib), we established a human colorectal cancer cell model adapted to sunitinib. The sunitinib-conditioned cells showed a significant increase in cellular motility and migration activities, compared to the vehicle-treated control cells. Consistent with the phenotype, the sunitinib-conditioned cells decreased the expression levels of E-cadherin (an epithelial marker), while significantly increased the levels of Slug and Zeb1 (mesenchymal markers). Expression profiles of VEGF-R in the sunitinib-conditioned cells showed that only neuropilin-1 (NRP1) expression was significantly increased among all VEGF-R tested. Blockade of NRP1 using its antagonist clearly repressed the migration activationin sunitinib-conditioned cells, but not in the control cells. These results suggest that inhibition of VEGF-R on colorectal cancer cells can drive the epithelial-mesenchymal transition, leading to activation of cell motility in an NRP1-dependent manner

    Regorafenib induces adaptive resistance of colorectal cancer cells via inhibition of vascular endothelial growth factor receptor

    Get PDF
    Recently, inhibition of tumor angiogenesis has become an important anti-cancer therapy. Tumor angiogenesis is regulated by multiple signaling pathways, including VEGF and VEGF receptor (VEGF-R), FGF and FGF receptor (FGF-R), and PDGF and PDGF receptor (PDGF-R) pathways. Thus, the antiangiogenic agents, such as regorafenib, simultaneously target those receptors on vascular endothelial cells. In addition to endothelial cells, cancer cells express the three receptors, suggesting that the antiangiogenic inhibitors affect tumor cells. In fact, we previously demonstrated that regorafenib directly acted on human colorectal cancer cells and accelerated their apoptosis resistance and migration capability. Thus, we here elucidated how regorafenib induced the malignant phenotypes in colorectal cancer cells. To identify the responsible receptor among the regorafenibtargeting proangiogenic receptors, we examined the effects of a potent selective inhibitor for VEGF-R, FGF-R or PDGF-R on apoptosis resistance and migration capability. We clarified that blockade of VEGF-R, but not FGF-R and PDGF-R, induced the malignant phenotypes. We confirmed that blocking of VEGF ligands derived from colorectal cancer cells also induced the phenotypes. These results suggest that regorafenib progressed the malignancy via prevention of autocrine and paracrine VEGF signaling in colorectal cancer cells

    DIRECT EFFECTS OF VEGF/VEGF-R TARGETING AGENTS ON COLON CANCER CELLS

    Get PDF
    Anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF) and its receptor (VEGF-R) are important treatments for a number of human malignancies, including colorectal cancers. However, there is increasing evidence that VEGF/VEGF-R inhibitors promote the adaptive and evasive resistance of tumor cells to the therapies. The mechanism by which the cancer cells become resistant remains unclear. One potential mechanism is that VEGF/VEGF-R blockers directly act on tumor cells independently of anti-angiogenic effects. In this study, the direct effects of an anti-VEGF antibody (bevacizumab) and a VEGF-R tyrosine kinase inhibitor (sunitinib) on the evasive adaptation of colon cancer cells were compared. HCT116 and RKO human colon cancer cell lines were chronically exposed (3 months) to bevacizumab or sunitinib in vitro to establish bevacizumab- and sunitinib-adapted cells, respectively. Transwell migration and invasion assays, western blotting, reverse transcription-quantitative polymerase chain reaction, co-immunoprecipitation analysis, cell survival assays and ELISAs were conducted to analyze the adapted cells. Compared with the control vehicle-treated cells, the two cell models exhibited increased migration and invasion activities to different degrees and through different mechanisms. The bevacizumab-adapted cells, but not in the sunitinib-adapted cells, exhibited redundantly increased expression levels of VEGF/VEGF-R family members, including VEGF-A, placental growth factor, VEGF-C, VEGF-R1 and VEGF-R3. In addition, the phosphorylation levels of VEGF-R1 and VEGF-R3 were increased in the bevacizumab-adapted cells compared with the control cells. Thus, the inhibition of VEGF-R1 and VEGF-R3 decreased the evasive activities of the cells, suggesting that they remained dependent on redundant VEGF/VEGF-R signaling. By contrast, the sunitinib-adapted cells exhibited increased neuropilin-1 (NRP1) expression levels compared with the control cells. In the sunitinib-adapted cells, NRP1 interacted with phosphorylated cMet, and the cMet activation was dependent on NRP1. Thus, NRP1 or cMet blockade suppressed the evasive activation of the sunitinib-adapted cells. These results suggest that the sunitinib-adapted cells switched from a VEGF-R-dependent pathway to an alternative NRP1/cMet-dependent one. The findings of the present study indicate that VEGF/VEGF-R inhibitors directly act on colon cancer cells and activate their evasive adaptation via different mechanisms

    DIRECT EFFECTS OF VEGF/VEGF-R TARGETING AGENTS ON COLON CANCER CELLS

    Get PDF
    Anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF) and its receptor (VEGF-R) are important treatments for a number of human malignancies, including colorectal cancers. However, there is increasing evidence that VEGF/VEGF-R inhibitors promote the adaptive and evasive resistance of tumor cells to the therapies. The mechanism by which the cancer cells become resistant remains unclear. One potential mechanism is that VEGF/VEGF-R blockers directly act on tumor cells independently of anti-angiogenic effects. In this study, the direct effects of an anti-VEGF antibody (bevacizumab) and a VEGF-R tyrosine kinase inhibitor (sunitinib) on the evasive adaptation of colon cancer cells were compared. HCT116 and RKO human colon cancer cell lines were chronically exposed (3 months) to bevacizumab or sunitinib in vitro to establish bevacizumab- and sunitinib-adapted cells, respectively. Transwell migration and invasion assays, western blotting, reverse transcription-quantitative polymerase chain reaction, co-immunoprecipitation analysis, cell survival assays and ELISAs were conducted to analyze the adapted cells. Compared with the control vehicle-treated cells, the two cell models exhibited increased migration and invasion activities to different degrees and through different mechanisms. The bevacizumab-adapted cells, but not in the sunitinib-adapted cells, exhibited redundantly increased expression levels of VEGF/VEGF-R family members, including VEGF-A, placental growth factor, VEGF-C, VEGF-R1 and VEGF-R3. In addition, the phosphorylation levels of VEGF-R1 and VEGF-R3 were increased in the bevacizumab-adapted cells compared with the control cells. Thus, the inhibition of VEGF-R1 and VEGF-R3 decreased the evasive activities of the cells, suggesting that they remained dependent on redundant VEGF/VEGF-R signaling. By contrast, the sunitinib-adapted cells exhibited increased neuropilin-1 (NRP1) expression levels compared with the control cells. In the sunitinib-adapted cells, NRP1 interacted with phosphorylated cMet, and the cMet activation was dependent on NRP1. Thus, NRP1 or cMet blockade suppressed the evasive activation of the sunitinib-adapted cells. These results suggest that the sunitinib-adapted cells switched from a VEGF-R-dependent pathway to an alternative NRP1/cMet-dependent one. The findings of the present study indicate that VEGF/VEGF-R inhibitors directly act on colon cancer cells and activate their evasive adaptation via different mechanisms

    Chronic exposure of VEGF inhibitors promotes the malignant phenotype of colorectal cancer cells

    Get PDF
    VEGF-targeting anti-angiogenic drugs have enabled significant advances in cancer therapy. However, acquired resistance to VEGF-targeting drugs occurs, leading to disease progression. How tumors become the resistance remains fully uncertain. One of possible mechanisms for the resistance may be the direct effect of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGF-R). We investigated here the direct effect of chronic VEGF inhibition on phenotype changes in cancer cells. To chronically inhibit cancer cell-derived VEGF, human colon cancer HCT116 cells were chronically exposed (3 months) to anti-VEGF neutralizing monoclonal antibody (HCT/mAb cells, blockade of VEGF alone) or VEGF-R tyrosine kinase inhibitor foretinib (HCT/fore cells, blockade of all VEGF family). HCT/mAb cells redundantly increased VEGF family member (VEGF, PlGF, VEGF-B, VEGF-R1 and VEGF-R2) and induced a resistance to hypoxia-induced apoptosis. By contrast, HCT/fore cells did not show the redundant increase in VEGF family member, but significantly increased a VEGF-independent pro-angiogenic factor FGF-2. HCT/fore cells showed increased migration and invasion activities in addition to a resistance to hypoxia-induced apoptosis. The resistance to apoptosis was significantly suppressed by inhibition of hypoxia-inducible factor-1α in HCT/mAb cells, but not in HCT/fore cells. These findings suggest that chronic inhibition of VEGF/VEGF-R accelerates malignant phenotypes of colon cancer cells

    4fce auroral roar: New aspects pertaining to MF/HF auroral radio emissions observed at ground level

    Get PDF
    第3回極域科学シンポジウム/第36回極域宙空圏シンポジウム 11月27日(火) 国立極地研究所 2階大会議
    corecore