27,136 research outputs found

    Metastability of R-Charged Black Holes

    Full text link
    The global stability of R-charged AdS black holes in a grand canonical ensemble is examined by eliminating the constraints from the action, but without solving the equations of motion, thereby constructing the reduced action of the system. The metastability of the system is found to set in at a critical value of the chemical potential which is conjugate to the R-charge. The relation among the small black hole, large black hole and the instability is discussed. The result is consistent with the metastability found in the AdS/CFT-conjectured dual field theory. The "renormalized" temperature of AdS black holes, which has been rather ad hoc, is suggested to be the boundary temperature in the sense of AdS/CFT correspondence. As a byproduct of the analysis, we find a more general solution of the theory and its properties are briefly discussed.Comment: 36 pages, 7 figures, v2 is the published version. the exposition is made slightly shorter and hopefully cleare

    Hydrogen-Bonded Liquids: Effects of Correlations of Orientational Degrees of Freedom

    Get PDF
    We improve a lattice model of water introduced by Sastry, Debenedetti, Sciortino, and Stanley to give insight on experimental thermodynamic anomalies in supercooled phase, taking into account the correlations between intra-molecular orientational degrees of freedom. The original Sastry et al. model including energetic, entropic and volumic effect of the orientation-dependent hydrogen bonds (HBs), captures qualitatively the experimental water behavior, but it ignores the geometrical correlation between HBs. Our mean-field calculation shows that adding these correlations gives a more water-like phase diagram than previously shown, with the appearance of a solid phase and first-order liquid-solid and gas-solid phase transitions. Further investigation is necessary to be able to use this model to characterize the thermodynamic properties of the supercooled region.Comment: 7 pages latex, 3 figures EP

    Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers

    Get PDF
    We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling are completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure

    Multi-cluster dynamics in Λ13C^{13}_\Lambda{\rm C} and analogy to clustering in 12C^{12}{\rm C}

    Full text link
    We investigate structure of Λ13C^{13}_\Lambda{\rm C} and discuss the difference and similarity between the structures of 12C^{12}{\rm C} and Λ13C^{13}_\Lambda{\rm C} by answering the questions if the linear-chain and gaslike cluster states, which are proposed to appear in 12C^{12}{\rm C}, survives, or new structure states appear or not. We introduce a microscopic cluster model called, Hyper-Tohsaki-Horiuchi-Schuck-R\"opke (H-THSR) wave function, which is an extended version of the THSR wave function so as to describe Λ\Lambda hypernuclei. We obtained two bound states and two resonance (quasi-bound) states for Jπ=0+J^\pi=0^+ in Λ13C^{13}_\Lambda{\rm C}, corresponding to the four 0+0^+ states in 12C^{12}{\rm C}. However, the inversion of level ordering between the spectra of 12C^{12}{\rm C} and Λ13C^{13}_\Lambda{\rm C}, i.e. that the 03+0_3^+ and 04+0_4^+ states in Λ13C^{13}_\Lambda{\rm C} correspond to the 04+0_4^+ and 03+0_3^+ states in 12C^{12}{\rm C}, respectively, is shown to occur. The additional Λ\Lambda particle reduces sizes of the 02+0_2^+ and 03+0_3^+ states in Λ13C^{13}_\Lambda{\rm C} very much, but the shrinkage of the 04+0_4^+ state is only a half of the other states. In conclusion, the Hoyle state becomes quite a compact object with Λ9Be+α{^{9}_\Lambda{\rm Be}}+\alpha configuration in Λ13C^{13}_\Lambda{\rm C} and is no more gaslike state composed of the 3α3\alpha clusters. Instead, the 04+0_4^+ state in Λ13C^{13}_\Lambda{\rm C}, coming from the 12C(03+)^{12}{\rm C}(0_3^+) state, appears as a gaslike state composed of α+α+Λ5He\alpha+\alpha+^{5}_\Lambda{\rm He} configuration, i.e. the Hoyle analog state. A linear-chain state in a Λ\Lambda hypernucleus is for the first time predicted to exist as the 03+0_3^+ state in Λ13C^{13}_\Lambda{\rm C} with more shrunk arrangement of the 3α3\alpha clusters along zz-axis than the 3α3\alpha linear-chain configuration realized in the 12C(04+)^{12}{\rm C}(0_4^+) state.Comment: 9 pages, 6 figures, figures rearranged, accepted for publication in PL

    Influence of the definition of dissipative events on their statistics

    Full text link
    A convenient and widely used way to study the turbulent plasma in the solar corona is to do statistics of properties of events (or structures), associated with flares, that can be found in observations or in numerical simulations. Numerous papers have followed such a methodology, using different definitions of an event, but the reasons behind the choice of a particular definition (and not another one) is very rarely discussed. We give here a comprehensive set of possible event definitions starting from a one-dimensional data set such as a time-series of energy dissipation. Each definition is then applied to a time-series of energy dissipation issued from simulations of a shell-model of magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or from a new model of coupled shell-models designed to represent a magnetic loop in the solar corona. We obtain distributions of the peak dissipation power, total energy, duration and waiting-time associated to each definition. These distributions are then investigated and compared, and the influence of the definition of an event on statistics is discussed. In particular, power-law distributions are more likely to appear when using a threshold. The sensitivity of the distributions to the definition of an event seems also to be weaker for events found in a highly intermittent time series. Some implications on statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic

    A light Higgs scenario based on the TeV-scale supersymmetric strong dynamics

    Full text link
    We consider a model based on the supersymmetric QCD theory with N_c=2 and N_f=3. The theory is strongly coupled at the infrared scale \Lambda_H. Its low energy effective theory below \Lambda_H is described by the supersymmetric standard model with the Higgs sector that contains four iso-spin doublets, two neutral iso-spin singlets and two charged iso-spin singlets. If \Lambda_H is at the multi-TeV to 10 TeV, coupling constants for the F-terms of these composite fields are relatively large at the electroweak scale. Nevertheless, the SM-like Higgs boson is predicted to be as light as 125 GeV because these F-terms contribute to the mass of the SM-like Higgs boson not at the tree level but at the one-loop level. A large non-decoupling effect due to these F-terms appears in the one-loop correction to the triple Higgs boson coupling, which amounts to a few tens percent. Such a non-decoupling property in the Higgs potential realizes the strong first order phase transition, which is required for a successful scenario of electroweak baryogenesis
    • …
    corecore