1,977 research outputs found

    Therapeutic Jurisprudence: Foundations, Expansion, and Assessment

    Get PDF
    Therapeutic Jurisprudence: Foundations, Expansion, and Assessment Founded in 1987 by law professors David Wexler and the late Bruce Winick, therapeutic jurisprudence (“TJ”) is a multidisciplinary school of legal theory and practice that examines the therapeutic and anti-therapeutic properties of law, policy, and legal institutions. In legal events and transactions, TJ inherently favors outcomes that advance human dignity and psychological well-being. Starting with original groundings in mental health and mental disability law, criminal law, and problem-solving courts, and with a geographic focus on the United States, TJ now embraces many aspects of law and policy and presents a strong international orientation. This Article provides a meta-level examination of the field, including its origins, core doctrinal and theoretical foundations, critical reviews, expansion into many areas of law, procedure, and legal institutions, and connections with other modalities of legal theory and practice. Furthermore, it assesses TJ’s standing and considers opportunities and challenges for the field’s expansion and growth. The intended purpose of this Article is two-fold: first, to spur discussions within the TJ community about the past, present, and future of the field and, second, to provide a substantive, yet accessible introduction to TJ for those who wish to learn more about it

    Human Dignity and American Employment Law

    Get PDF

    Teaching Therapeutic Jurisprudence

    Get PDF

    Holes in the valence band of superconducting boron-doped diamond film studied by soft X-ray absorption and emission spectroscopy

    Full text link
    Carbon- and boron-2pp states of superconducting and non-superconducting boron-doped diamond samples are measured using soft X-ray emission and absorption spectroscopy. For the superconducting sample, a large density of hole states is observed in the valence band in addition to the states in the impurity band. The hole states in the valence band is located at about 1.3 eV below the valence band maximum regardless of the doping level, which cannot be interpreted within a simple rigid band model. Present experimental results, combined with the first principles calculations, suggest that superconductivity is to be attributed to the holes in the valence band.Comment: 4 pages, 4 figure

    Finite temperature dynamics of the Anderson model

    Full text link
    The recently introduced local moment approach (LMA) is extended to encompass single-particle dynamics and transport properties of the Anderson impurity model at finite-temperature, T. While applicable to arbitrary interaction strengths, primary emphasis is given to the strongly correlated Kondo regime (characterized by the T=0 Kondo scale ωK\omega_{\rm K}). In particular the resultant universal scaling behaviour of the single-particle spectrum D(\omega; T) \equiv F(\frac{\w}{\omega_{\rm K}}; \frac{T}{\omega_{\rm K}}) within the LMA is obtained in closed form; leading to an analytical description of the thermal destruction of the Kondo resonance on all energy scales. Transport properties follow directly from a knowledge of D(ω;T)D(\omega; T). The T/ωKT / \omega_{\rm K}-dependence of the resulting resistivity ρ(T)\rho(T), which is found to agree rather well with numerical renormalization group calculations, is shown to be asymptotically exact at high temperatures; to concur well with the Hamann approximation for the s-d model down to T/ωK1T/\omega_{\rm K} \sim 1, and to cross over smoothly to the Fermi liquid form ρ(T)ρ(0)(T/ωK)2\rho (T) - \rho (0) \propto -(T/\omega_{\rm K})^2 in the low-temperature limit. The underlying approach, while naturally approximate, is moreover applicable to a broad range of quantum impurity and related models

    Motional diminishing of optical activity: a novel method for studying molecular dynamics in liquids and plastic crystals

    Full text link
    Molecular dynamics calculations and optical spectroscopy measurements of weakly active infrared modes are reported. The results are qualitatively understood in terms of the "motional diminishing" of IR lines, a process analogous to the motional narrowing of a nuclear magnetic resonance (NMR) signal. In molecular solids or liquids where the appropriate intramolecular resonances are observable, motional diminishing can be used to study the fluctuations of the intermolecular interactions having time scales of 1psec to 100psec.Comment: RevTeX in LaTeX file, 12 preprint pages, 4 ps figures included. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.html Accepted for publication in Chem. Phys. Let

    Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)

    Full text link
    Soft X-ray absorption and emission measurements are performed for the K- edge of B in MB2_2 (M=Mg, Al, Ta and Nb). Unique feature of MgB2_2 with a high density of B 2pxy(σ)p_{xy}(\sigma)-state below and above the Fermi edge, which extends to 1 eV above the edge, is confirmed. In contrast, the B 2pp density of states in AlB2_2 and TaB2_2, both of occupied and unoccupied states, decreased linearly towards the Fermi energy and showed a dip at the Fermi energy. Furthermore, there is a broadening of the peaks with pσp\sigma-character in XES and XAS of AlB2_2, which is due to the increase of three dimensionality in the pσp\sigma-band in AlB2_2. The DOS of NbB2_2 has a dip just below the Fermi energy. The present results indicate that the large DOS of B-2pσp\sigma states near the Fermi energy are crucial for the superconductivity of MgB2_2.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys. Rev.

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000
    corecore