11 research outputs found

    Automatic assessment of disproportionately enlarged subarachnoid-space hydrocephalus from 3D MRI using two deep learning models

    No full text
    BackgroundDisproportionately enlarged subarachnoid-space hydrocephalus (DESH) is a key feature for Hakim disease (idiopathic normal pressure hydrocephalus: iNPH), but subjectively evaluated. To develop automatic quantitative assessment of DESH with automatic segmentation using combined deep learning models.MethodsThis study included 180 participants (42 Hakim patients, 138 healthy volunteers; 78 males, 102 females). Overall, 159 three-dimensional (3D) T1-weighted and 180 T2-weighted MRIs were included. As a semantic segmentation, 3D MRIs were automatically segmented in the total ventricles, total subarachnoid space (SAS), high-convexity SAS, and Sylvian fissure and basal cistern on the 3D U-Net model. As an image classification, DESH, ventricular dilatation (VD), tightened sulci in the high convexities (THC), and Sylvian fissure dilatation (SFD) were automatically assessed on the multimodal convolutional neural network (CNN) model. For both deep learning models, 110 T1- and 130 T2-weighted MRIs were used for training, 30 T1- and 30 T2-weighted MRIs for internal validation, and the remaining 19 T1- and 20 T2-weighted MRIs for external validation. Dice score was calculated as (overlapping area) × 2/total area.ResultsAutomatic region extraction from 3D T1- and T2-weighted MRI was accurate for the total ventricles (mean Dice scores: 0.85 and 0.83), Sylvian fissure and basal cistern (0.70 and 0.69), and high-convexity SAS (0.68 and 0.60), respectively. Automatic determination of DESH, VD, THC, and SFD from the segmented regions on the multimodal CNN model was sufficiently reliable; all of the mean softmax probability scores were exceeded by 0.95. All of the areas under the receiver-operating characteristic curves of the DESH, Venthi, and Sylhi indexes calculated by the segmented regions for detecting DESH were exceeded by 0.97.ConclusionUsing 3D U-Net and a multimodal CNN, DESH was automatically detected with automatically segmented regions from 3D MRIs. Our developed diagnostic support tool can improve the precision of Hakim disease (iNPH) diagnosis

    Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model

    No full text
    To quantitatively assess pathological gait, we developed a novel smartphone application for full-body human motion tracking in real time from markerless video-based images using a smartphone monocular camera and deep learning. As training data for deep learning, the original three-dimensional (3D) dataset comprising more than 1 million captured images from the 3D motion of 90 humanoid characters and the two-dimensional dataset of COCO 2017 were prepared. The 3D heatmap offset data consisting of 28 × 28 × 28 blocks with three red–green–blue colors at the 24 key points of the entire body motion were learned using the convolutional neural network, modified ResNet34. At each key point, the hottest spot deviating from the center of the cell was learned using the tanh function. Our new iOS application could detect the relative tri-axial coordinates of the 24 whole-body key points centered on the navel in real time without any markers for motion capture. By using the relative coordinates, the 3D angles of the neck, lumbar, bilateral hip, knee, and ankle joints were estimated. Any human motion could be quantitatively and easily assessed using a new smartphone application named Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) without any body markers or multipoint cameras

    Quantitative Gait Feature Assessment on Two-Dimensional Body Axis Projection Planes Converted from Three-Dimensional Coordinates Estimated with a Deep Learning Smartphone App

    No full text
    To assess pathological gaits quantitatively, three-dimensional coordinates estimated with a deep learning model were converted into body axis plane projections. First, 15 healthy volunteers performed four gait patterns; that is, normal, shuffling, short-stepped, and wide-based gaits, with the Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) application. Second, gaits of 47 patients with idiopathic normal pressure hydrocephalus (iNPH) and 92 healthy elderly individuals in the Takahata cohort were assessed with the TDPT-GT. Two-dimensional relative coordinates were calculated from the three-dimensional coordinates by projecting the sagittal, coronal, and axial planes. Indices of the two-dimensional relative coordinates associated with a pathological gait were comprehensively explored. The candidate indices for the shuffling gait were the angle range of the hip joint 0.1 on the axial projection plane. In conclusion, the two-dimensional coordinates on the body axis projection planes calculated from the 3D relative coordinates estimated by the TDPT-GT application enabled the quantification of pathological gait features

    Fluctuations in Upper and Lower Body Movement during Walking in Normal Pressure Hydrocephalus and Parkinson’s Disease Assessed by Motion Capture with a Smartphone Application, TDPT-GT

    No full text
    We aimed to capture the fluctuations in the dynamics of body positions and find the characteristics of them in patients with idiopathic normal pressure hydrocephalus (iNPH) and Parkinson’s disease (PD). With the motion-capture application (TDPT-GT) generating 30 Hz coordinates at 27 points on the body, walking in a circle 1 m in diameter was recorded for 23 of iNPH, 23 of PD, and 92 controls. For 128 frames of calculated distances from the navel to the other points, after the Fourier transforms, the slopes (the representatives of fractality) were obtained from the graph plotting the power spectral density against the frequency in log–log coordinates. Differences in the average slopes were tested by one-way ANOVA and multiple comparisons between every two groups. A decrease in the absolute slope value indicates a departure from the 1/f noise characteristic observed in healthy variations. Significant differences in the patient groups and controls were found in all body positions, where patients always showed smaller absolute values. Our system could measure the whole body’s movement and temporal variations during walking. The impaired fluctuations of body movement in the upper and lower body may contribute to gait and balance disorders in patients

    A Segmental Copy Number Loss of the <i>SFMBT1</i> Gene Is a Genetic Risk for Shunt-Responsive, Idiopathic Normal Pressure Hydrocephalus (iNPH): A Case-Control Study

    No full text
    <div><p>Little is known about genetic risk factors for idiopathic normal pressure hydrocephalus (iNPH). We examined whether a copy number loss in intron 2 of the <i>SFMBT1</i> gene could be a genetic risk for shunt-responsive, definite iNPH. Quantitative and digital PCR analyses revealed that 26.0% of shunt-responsive definite iNPH patients (n = 50) had such a genetic change, as compared with 4.2% of the healthy elderly (n = 191) (OR = 7.94, 95%CI: 2.82–23.79, <i>p</i> = 1.8 x 10<sup>−5</sup>) and 6.3% of patients with Parkinson’s disease (n = 32) (OR = 5.18, 95%CI: 1.1–50.8, <i>p</i> = 0.038). The present study demonstrates that a copy number loss within intron 2 of the <i>SFMBT1</i> gene may be a genetic risk factor for shunt-responsive definite iNPH.</p></div
    corecore