105 research outputs found

    Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3Ī² and PP2A Signaling

    Get PDF
    Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimerā€™s disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3Ī² (GSK-3Ī²) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3Ī² and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3Ī². The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3Ī² over-activation. In the mechanism of action, CIGā€™s attenuating GSK-3Ī² activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3Ī². Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3Ī² activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3Ī² activity, thus regulated the cross-talk between GSK-3Ī² and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy

    Increased transgene expression mediated by recombinant adeno-associated virus in human neuroglia cells under microgravity conditions

    Get PDF
    The space environment has the special characteristics of radiation, noise particularity and weightlessness, all of which have adverse effects on astronautsā€™ muscles, bones, neurons and immune system. Some reports have shown that chemotherapy and radiotherapy can increase the activity of the recombinant adeno-associated virus (AAV) which is widely used in gene therapy. In this paper, recombinant AAV2 (rAAV2) was first packaged with the enhanced green fluorescence protein (eGFP) gene and used to infect neuroglia cells including the U87 and U251 cell lines, under microgravity conditions; it was then detected by fluorescence microscopy and flow cytometry. The results show that microgravity affects the adhesion ability of cells, promotes transgene expression induced by rAAV2 and causes changes of viral infection receptors at different time points. These findings broaden the current understanding of the microgravity effects on rAAV, with significant implications in gene therapy and the mechanisms of increased virus pathogenicity under space microgravity.

    Prognostic and therapeutic significance of microbial cell-free DNA in plasma of people with acutely decompensated cirrhosis

    Get PDF
    BACKGROUND AND AIMS: Although the effect of bacterial infection on cirrhosis has been well-described, the effect of non-hepatotropic virus (NHV) infection is unknown. This study evaluated the genome fragments of circulating microorganisms using metagenomic next-generation sequencing (mNGS) in cirrhosis patients with acute decompensation (AD), focusing on NHVs and related the findings to clinical outcomes. METHODS: Plasma mNGS was performed in 129 cirrhosis patients with AD in study cohort. Ten healthy volunteers and 20, 39, and 81 patients with stable cirrhosis, severe sepsis and hematological malignancies, respectively, were enrolled as controls. Validation assays for human cytomegalovirus (CMV) reactivation in a validation cohort (n = 58) were performed and exploratory treatment instituted. RESULTS: In study cohort, 188 microorganisms were detected in 74.4% (96/129) patients, including viruses (58.0%), bacteria (34.1%), fungi (7.4%) and chlamydia (0.5%). Patients with AD had an NHV signature, and CMV was the most frequent NHV, which correlated with the clinical effect of empirical antibiotic treatment, progression to acute-on-chronic liver failure (ACLF), and 90-day mortality. The NHV signature in ACLF patients was similar to patients with sepsis and hematological malignancies. The treatable NHV, CMV was detected in 24.1% (14/58) patients in the validation cohort. Of the 14 cases with detectable CMV by mNGS, 9 were further validated by DNA RT-PCR or pp65 antigenemia testing. Three patients with CMV reactivation received ganciclovir therapy in exploratory manner with clinical resolutions. CONCLUSIONS: The results of this study suggests that NHVs may have a pathogenic role in complicating the course of AD. Further validation is needed to define whether this should be incorporated in the routine management of AD patients. IMPACT AND IMPLICATIONS: ā—Cirrhosis patients with acute decompensation have a non-hepatotropic virus (NHV) signature, which is similar to that in sepsis and hematological malignancies patients. ā—The detected viral signature had clinical correlates, including clinical efficacy of empirical antibiotic treatment, progression to acute-on-chronic liver failure and short-term mortality. ā—The treatable NHV, CMV reactivation may be involved in the clinical outcomes of decompensated cirrhosis. ā—Routine screening for NHVs, especially CMV, may be useful for the management of patients with acutely decompensated cirrhosis

    Molecular Cloning and Characterization of Babesia orientalis

    Get PDF
    Babesiosis caused by Babesia orientalis is one of the most prevalent infections of water buffalo transmitted by Rhipicephalus haemaphysaloides causing a parasitic and hemolytic disease. The organelles proteins localized in apical membrane especially rhoptries neck and microneme protein form a complex called moving junction important during invasion process of parasites belonging to apicomplexan group, including Babesia species. A truncated fragment coding a 936ā€‰bps fragment was cloned in pMD-19T and subcloned into pET32 (a)+ expression vector, expressed in E. coli BL21. Purified recombinant BoRON2 was used to produce polyclonal antibody against BoRON2. Here, we identified the full sequence of gene encoding the rhoptry neck 2 protein that we named BoRON2 which is 4035ā€‰bp in full-length open reading frame without introns, encoding a polypeptide of 1345 amino acids. Western blot of rBoRON2 probed with buffalo positive serum analysis revealed a band of around 150ā€‰kDa in parasite lysates, suggesting an active involvement during invasion process. These findings most likely are constructive in perspective of ongoing research focused particularly on water buffalo babesiosis prevention and therapeutics and globally provide new information for genes comparative analysis

    Biological Bone Micro Grinding Temperature Field under Nanoparticle Jet Mist Cooling

    Get PDF
    Clinical neurosurgeons used micro grinding to remove bone tissues, and drip irrigation-type normal saline (NS) is used with low cooling efficiency. Osteonecrosis and irreversible thermal neural injury caused by excessively high grinding temperature are bottleneck problems in neurosurgery and have severely restricted the application of micro grinding in surgical procedures. Therefore, a nanoparticle jet mist cooling (NJMC) bio-bone micro grinding process is put forward in this chapter. The nanofluid convective heat transfer mechanism in the micro grinding zone is investigated, and heat transfer enhancement mechanism of solid nanoparticles and heat distribution mechanism in the micro grinding zone are revealed. On this basis, a temperature field model of NJMC bio-bone micro grinding is established. An experimental platform of NJMC bio-bone micro grinding is constructed, and bone micro grinding force and temperatures at different measuring points on the bone surface are measured. The results indicated that the model error of temperature field is 6.7%, theoretical analysis basically accorded with experimental results, thus certifying the correctness of the dynamic temperature field in NJMC bio-bone micro grinding

    Multiple Kinases Involved in the Nicotinic Modulation of Gamma Oscillations in the Rat Hippocampal CA3 Area

    Get PDF
    Neuronal synchronization at gamma band frequency (20ā€“80 Hz, Ī³ oscillations) is closely associated with higher brain function, such as learning, memory and attention. Nicotinic acetylcholine receptors (nAChRs) are highly expressed in the hippocampus, and modulate hippocampal Ī³ oscillations, but the intracellular mechanism underlying such modulation remains elusive. We explored multiple kinases by which nicotine can modulate Ī³ oscillations induced by kainate in rat hippocampal area CA3 in vitro. We found that inhibitors of cyclic AMP dependent kinase (protein kinase A, PKA), protein kinase C (PKC), N-methyl-D-aspartate receptor (NMDA) receptors, Phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinases (ERK), each individually could prevent the Ī³ oscillation-enhancing effect of 1 Ī¼M nicotine, whereas none of them affected baseline Ī³ oscillation strength. Inhibition of the serine/threonine kinase Akt increased baseline Ī³ oscillations and partially blocked its nicotinic enhancement. We propose that the PKA-NMDAR-PI3K-ERK pathway modifies cellular properties required for the nicotinic enhancement of Ī³ oscillations, dependent on a PKC-ERK mediated pathway. These signaling pathways provide clues for restoring Ī³ oscillations in pathological conditions affecting cognition. The suppression of Ī³ oscillations at 100 Ī¼M nicotine was only dependent on PKA-NMDAR activation and may be due to very high intracellular calcium levels

    Seed Heteromorphism and Effects of Light and Abiotic Stress on Germination of a Typical Annual Halophyte Salsola ferganica in Cold Desert

    No full text
    Seed heteromorphism is a common characteristic of halophyte and an adaptation to the spatial and temporal variations of natural habitats. Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but the mechanisms for maintenance between different status in various populations have not been well-understood. Salsola ferganica is a typical annual halophyte in Chenopodiaceae distributed in cold desert, in the present study, we found that it could produce three distinct types of seed according to the shape and size of winged perianth (WP), which differed in dispersal ability, dormancy and germination behaviors. Our further investigation revealed that light could significantly promote germination of heteromorphic seeds of S. ferganica, and WP inhibited while GA3 enhanced germination, which suggests that S. ferganica seeds possessed a photo-sensitive combined with morphological and non-deep physiological dormancy type, in which light was the dominant factor. Not like other desert plant species, the germinability of heteromorphic seeds of S. ferganica could not sustain for long (only 1ā€“2 years), especially the small seeds, and was affected by storage time, temperature, salinity, even the environmental conditions of the maternal plant. Thus, the differences of characteristics existed among heteromorphic seeds and variations of heteromorphic ratio among different calendar years were presumed as diverse adaptation strategies integrated in the individual mother plant, and might apply important ecological significance for successful reproduction of the species in the unpredictable cold desert

    Preliminary Evaluation of Spraying Quality of Multi-Unmanned Aerial Vehicle (UAV) Close Formation Spraying

    No full text
    Chemical application using unmanned aerial vehicles (UAVs) has received significant attention from researchers and the market in recent years. The concept of using drones for collaborative spraying was proposed by manufacturers for improving intelligence and work efficiency. However, chemical spraying is a professional technology in which spraying quality is the main concern. Using drones to achieve multi-unmanned aerial vehicle formation spraying and evaluating the spraying effect has not yet been reported. In this study, an indoor test platform and two UAVs for field experiments were built. Indoor and outdoor trials of close formation spraying were carried out in Guangzhou and Changji, China from the end of 2018 to 2019, respectively. The droplet density and distribution uniformity of droplets were evaluated from multiple spray overlap areas. It can be seen that simultaneous spraying was better than sequential spraying with the indoor spraying results in the outer fuselage overlap area (S1), and spraying in a short-interval mode can improve the droplet deposition distribution in the overlapping spraying area. Additionally, the droplet distribution result of sequential spraying was better than that of simultaneous spraying in the route center overlap area (S2). Also, the droplet distribution result of the long-interval mode was better than that of the short-interval mode. The uniformity of the droplets’ distribution in two spray width areas (S3) did not change significantly among the treatments
    • ā€¦
    corecore