6 research outputs found

    Synthesis and potent antistaphylococcal activity of some new 2-[4-(3,4-dimethoxyphenoxy) phenyl]-1, N-disubstituted-1H-benzimidazole-5-carboxamidines

    No full text
    A series of new 2-[4-(3,4-dimethoxyphenoxy) phenyl]-1, N-disubstituted-1H-benzimidazole-5carboxamidines (23-33) have been synthesized and evaluated for their potential antistaphylococcal activity. Cytotoxic effects of the compounds were investigated by the neutral red uptake (NRU) cytotoxicity test. Most of the compounds exhibited good MICs values against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Compound 28 with N-cyclohexylcarboxamidine group at the 5-position was found to be the most potent agent, with the MIC value of 3.12 mu g/mL

    Synthesis and In Vitro Activity of Polyhalogenated 2-phenylbenzimidazoles as a New Class of anti-MRSA and Anti-VRE Agents

    No full text
    A series of novel polyhalogenated 2-phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug-resistant bacterial strains (methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78 mu g/mL) with the lowest MIC values with 0.19 mu g/mL against methicillin-resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin-resistant Enterococcus faecium (1.56 mu g/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti-methicillin-resistant Staphylococcus aureus and anti-vancomycin-resistant Enterococcus faecium agents

    Environmental boron exposure does not induce DNA damage in lymphocytes and buccal cells of females DNA damage in lymphocytes and buccal cells of boron exposed females

    No full text
    WOS: 000497982700024PubMed: 30910199Boron (B) compounds are essential for plants and animals and beneficial for humans in nutritional amounts. I animals and humans increasing evidence have shown beneficial effects on B compounds on nutrition and on antioxidant status. The genotoxic effects of environmental B exposure in women living in boron-rich and boronpoor areas was examined in this study. For this purpose, the DNA damage in the lymphocytes and buccal cells of females were assessed by Comet and micronucleus (MN) assays respectively. No significant difference was observed in the DNA damage of the lymphocytes of B exposed groups of female volunteers in Comet assay. Even buccal micronucleus (MN) frequency observed in the high exposure group was significantly lower than the low exposure group (p < 0.05). The results of this study came to the same conclusions of the previous studies that boron does not induce DNA damage even under extreme exposure conditions.Eti Mine Works General ManagementMinistry of Energy & Natural Resources - TurkeyThe project was funded by Eti Mine Works General Management (2014-2017)

    Assessment of DNA integrity (COMET assay) in sperm cells of boron-exposed workers

    No full text
    An extension of a male reproductive study conducted in a boric acid/borate production zone at Bandirma, Turkey, is presented. The relation between DNA-strand breaks (COMET assay, neutral and alkaline version) in sperm cells and previously described sperm quality parameters was investigated in boron-exposed males. A correlation between blood boron levels and mean DNA-strand breaks in sperm was weak, and DNA-strand breaks in sperm were statistically not different between control and exposed groups. Therefore, increasing boron exposures had no additional contribution in addition to already pre-existing DNA-strand breaks in the sperm cells. Weak but statistically significant correlations between DNA-strand breaks and motility/morphology parameters of sperm samples were observed in the neutral version of the COMET assay, while correlations between the same variables were statistically not significant in the alkaline version. A likely reason for these negative results, even in highly exposed humans, is that experimental exposures that had led to reproductive toxicity in animals were significantly higher than any boron exposures, which may be reached under realistic human conditions

    Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in BandA +/- rma, Turkey

    No full text
    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in BandA +/- rma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 +/- A 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use
    corecore