47 research outputs found

    Low-Dose Intravenous Alteplase in Wake-Up Stroke

    Get PDF
    Background and Purpose—We assessed whether lower-dose alteplase at 0.6 mg/kg is efficacious and safe for acute fluid-attenuated inversion recovery-negative stroke with unknown time of onset. Methods—This was an investigator-initiated, multicenter, randomized, open-label, blinded-end point trial. Patients met the standard indication criteria for intravenous thrombolysis other than a time last-known-well >4.5 hours (eg, wake-up stroke). Patients were randomly assigned (1:1) to receive alteplase at 0.6 mg/kg or standard medical treatment if magnetic resonance imaging showed acute ischemic lesion on diffusion-weighted imaging and no marked corresponding hyperintensity on fluid-attenuated inversion recovery. The primary outcome was a favorable outcome (90-day modified Rankin Scale score of 0–1). Results—Following the early stop and positive results of the WAKE-UP trial (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke), this trial was prematurely terminated with 131 of the anticipated 300 patients (55 women; mean age, 74.4±12.2 years). Favorable outcome was comparable between the alteplase group (32/68, 47.1%) and the control group (28/58, 48.3%; relative risk [RR], 0.97 [95% CI, 0.68–1.41]; P=0.892). Symptomatic intracranial hemorrhage within 22 to 36 hours occurred in 1/71 and 0/60 (RR, infinity [95% CI, 0.06 to infinity]; P>0.999), respectively. Death at 90 days occurred in 2/71 and 2/60 (RR, 0.85 [95% CI, 0.06–12.58]; P>0.999), respectively. Conclusions—No difference in favorable outcome was seen between alteplase and control groups among patients with ischemic stroke with unknown time of onset. The safety of alteplase at 0.6 mg/kg was comparable to that of standard treatment. Early study termination precludes any definitive conclusions

    Outcome of intracerebral hemorrhage associated with different oral anticoagulants

    Get PDF
    Objective: In an international collaborative multicenter pooled analysis, we compared mortality, functional outcome, intracerebral hemorrhage (ICH) volume, and hematoma expansion (HE) between non-vitamin K antagonist oral anticoagulation-related ICH (NOAC-ICH) and vitamin K antagonist-associated ICH (VKA-ICH). Methods: We compared all-cause mortality within 90 days for NOAC-ICH and VKA-ICH using a Cox proportional hazards model adjusted for age; sex; baseline Glasgow Coma Scale score, ICH location, and log volume; intraventricular hemorrhage volume; and intracranial surgery. We addressed heterogeneity using a shared frailty term. Good functional outcome was defined as discharge modified Rankin Scale score 33% or >6 mL from baseline within 72 hours. Results: We included 500 patients (97 NOAC-ICH and 403 VKA-ICH). Median baseline ICH volume was 14.4 mL (interquartile range [IQR] 3.6-38.4) for NOAC-ICH vs 10.6 mL (IQR 4.0-27.9) for VKA-ICH (p = 0.78). We did not find any difference between NOAC-ICH and VKA-ICH for all-cause mortality within 90 days (33% for NOAC-ICH vs 31% for VKA-ICH [p = 0.64]; adjusted Cox hazard ratio (for NOAC-ICH vs VKA-ICH) 0.93 [95% confidence interval (CI) 0.52-1.64] [p = 0.79]), the rate of HE (NOAC-ICH n = 29/48 [40%] vs VKA-ICH n = 93/140 [34%] [p = 0.45]), or functional outcome at hospital discharge (NOAC-ICH vs VKA-ICH odds ratio 0.47; 95% CI 0.18-1.19 [p = 0.11]). Conclusions: In our international collaborative multicenter pooled analysis, baseline ICH volume, hematoma expansion, 90-day mortality, and functional outcome were similar following NOAC-ICH and VKA-ICH.Peer reviewe

    Clinical associations and prognostic value of MRI-visible perivascular spaces in patients with ischemic stroke or TIA: a pooled analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH

    Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation

    Get PDF
    OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≄11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved

    Neuroimaging and clinical outcomes of oral anticoagulant-associated intracerebral hemorrhage

    Get PDF
    Objective Methods Whether intracerebral hemorrhage (ICH) associated with non-vitamin K antagonist oral anticoagulants (NOAC-ICH) has a better outcome compared to ICH associated with vitamin K antagonists (VKA-ICH) is uncertain. We performed a systematic review and individual patient data meta-analysis of cohort studies comparing clinical and radiological outcomes between NOAC-ICH and VKA-ICH patients. The primary outcome measure was 30-day all-cause mortality. All outcomes were assessed in multivariate regression analyses adjusted for age, sex, ICH location, and intraventricular hemorrhage extension. Results Interpretation We included 7 eligible studies comprising 219 NOAC-ICH and 831 VKA-ICH patients (mean age = 77 years, 52.5% females). The 30-day mortality was similar between NOAC-ICH and VKA-ICH (24.3% vs 26.5%; hazard ratio = 0.94, 95% confidence interval [CI] = 0.67-1.31). However, in multivariate analyses adjusting for potential confounders, NOAC-ICH was associated with lower admission National Institutes of Health Stroke Scale (NIHSS) score (linear regression coefficient = -2.83, 95% CI = -5.28 to -0.38), lower likelihood of severe stroke (NIHSS > 10 points) on admission (odds ratio [OR] = 0.50, 95% CI = 0.30-0.84), and smaller baseline hematoma volume (linear regression coefficient = -0.24, 95% CI = -0.47 to -0.16). The two groups did not differ in the likelihood of baseline hematoma volume <30cm(3) (OR = 1.14, 95% CI = 0.81-1.62), hematoma expansion (OR = 0.97, 95% CI = 0.63-1.48), in-hospital mortality (OR = 0.73, 95% CI = 0.49-1.11), functional status at discharge (common OR = 0.78, 95% CI = 0.57-1.07), or functional status at 3 months (common OR = 1.03, 95% CI = 0.75-1.43). Although functional outcome at discharge, 1 month, or 3 months was comparable after NOAC-ICH and VKA-ICH, patients with NOAC-ICH had smaller baseline hematoma volumes and less severe acute stroke syndromes. Ann Neurol 2018;84:702-712Peer reviewe
    corecore