380 research outputs found
Energy spectrum of graphene multilayers in a parallel magnetic field
We study the orbital effect of a strong magnetic field parallel to the layers
on the energy spectrum of the Bernal-stacked graphene bilayer and multilayers,
including graphite. We consider the minimal model with the electron tunneling
between the nearest sites in the plane and out of the plane. Using the
semiclassical analytical approximation and exact numerical diagonalization, we
find that the energy spectrum consists of two domains. In the low- and
high-energy domains, the semiclassical electron orbits are closed and open, so
the spectra are discrete and continuous, correspondingly. The discrete energy
levels are the analogs of the Landau levels for the parallel magnetic field.
They can be detected experimentally using electron tunneling and optical
spectroscopy. In both domains, the electron wave functions are localized on a
finite number of graphene layers, so the results can be applied to graphene
multilayers of a finite thickness.Comment: 11 pages, 13 figures. Added to v.2: Appendix A, Fig. 13, Refs.
[18-23]. V.3: minor stylistic corrections from the published versio
Дослідження напружено-деформованого стану циліндра з мікроструктурними перетвореннями за умов імпульсного навантаження
Axisymmetric dynamic problem of thermomechanical loading of a steel cylinder is considered. Volume strain caused by the microstructural transformations of the martensitic type under cooling solids as well as into consideration and dependence inelastic characteristics of material for multiphase state are taken. The thermomechanical nonlinear behavior of an isotropic material is described by unified flow model generalized for the case of multiphase material state. The problem is solved numerically by the implicit step-by-step time integration method, by the iterative method and by the finite element method. The investigation of the stress-strain state of an inelastic material with regard for the dependence of parameters of the flow model on the phase composition of a material is carried out by using of numerical simulation. We established that microstructural transformations significantly reduce residual inelastic strain and promote the appearance of compressive stresses. The results obtained in the work can be used in calculations of parameters of surface hardening technologies.
Pages of the article in the issue: 176 - 179
Language of the article: UkrainianРозглядається осесиметрична задача про імпульсне термомеханічне навантаження сталевого циліндра. Враховуються об’ємні деформації, які супроводжують мікроструктурні перетворення мартенситного типу при охолодженні тіл, а також залежність непружних характеристик матеріалу від фазового складу. Термомеханічна поведінка ізотропного матеріалу описується моделлю течії Боднера-Партома. Задача розв’язується чисельно методом покрокового неявного інтегрування за часом, ітераційним методом та методом скінченних елементів. За допомогою чисельного моделювання проводиться дослідження напружено-деформованого стану за умов врахування залежності параметрів моделі від мікроструктури матеріалу. Встановлено, що мікроструктурні перетворення суттєво зменшують залишкові деформації та сприяють появі стискальних напружень. Отримані результати можуть бути використані в інженерних розрахунках на міцність елементів конструкцій, а також параметрів технологій поверхневого зміцнення
Field-induced spin density wave in (TMTSF)NO
Interlayer magnetoresistance of the Bechgaard salt (TMTSF)NO is
investigated up to 50 teslas under pressures of a few kilobars. This compound,
the Fermi surface of which is quasi two-dimensional at low temperature, is a
semi metal under pressure. Nevertheless, a field-induced spin density wave is
evidenced at 8.5 kbar above 20 T. This state is characterized by a
drastically different spectrum of the quantum oscillations compared to the low
pressure spin density wave state.Comment: to be published in Phys. Rev. B 71 (2005
Порівняльний аналіз лінійного та нелінійного правил сумішей при моделюванні напруженого стану півпростору
In the present work we solve the axially symmetric problem of a half-space under thermal loading. The statement of the problem includes: Cauchy relations, equations of motion, heat conduction equation, initial conditions, thermal and mechanical boundary conditions. The thermomechanical behavior of an isotropic material is described by the Bodner–Partom unified model of flow generalized in the case of microstructure influence on inelastic characteristics of steel. To determine the parameters of the model corresponded to yield stress and yield strength the mixture rule is utilized. The problem is solved with using the finite element technique. The numerical realization of our problem is performed with the help of step-by-step time integration. Equations of the evolution for the inelastic flow model are integrated by the second-order Euler implicit method. The equations of motion are integrated by the Newmark method, whereas the heat-conduction equation is integrated by the first-order implicit method. We use quadrangular isoparametric elements. The parameters of a fine grid are chosen with the help of the criterion of practical convergence of the solutions. The stress state taking into account linear and nonlinear rules of mixtures is described.
Pages of the article in the issue: 94 - 97
Language of the article: UkrainianУ даній статті чисельно досліджується осесиметрична задача про термічне імпульсне навантаження півпростору. Постановка задачі включає співвідношення Коші, рівняння руху, рівняння теплопровідності, початкові умови, теплові та механічні граничні умови. Для моделювання механічної поведінки матеріалу використовується модель течії Боднера-Партома, узагальнена на випадок впливу мікроструктури на непружні характеристики сталі. Для визначення параметрів моделі, що відповідають за границю текучості та тимчасовий опір матеріалу, використано лінійне правило сумішей. Задача розв’язується за допомогою скінченно-елементної методики. Чисельна реалізація задачі проводиться за допомогою покрокового інтегрування за часом. Описано напружений стан півпростору при врахуванні лінійного та нелінійного правил сумішей
Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors
We study the long-wavelength collective modes in the magnetic-field-induced
spin-density-wave (FISDW) phases experimentally observed in organic conductors
of the Bechgaard salts family, focusing on phases that exhibit a sign reversal
of the quantum Hall effect (Ribault anomaly). We have recently proposed that
two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When
the latter are strong enough, the two SDW's become circularly polarized
(helicoidal SDW's). In this paper, we study the collective modes which result
from the presence of two SDW's. We find two Goldstone modes, an out-of-phase
sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding
Goldstone mode carries only a fraction of the total optical spectral weight,
which is determined by the ratio of the amplitude of the two SDW's. In the
helicoidal phase, all the spectral weight is pushed up above the SDW gap. We
also point out similarities with phase modes in two-band or bilayer
superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure
Orientational order parameters of a de Vries–type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction
The orientational order parameters 〈P2〉 and 〈P4〉 of the ferroelectric, de Vries–type liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a “sugar loaf” orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vries–type behavior is considered
A study on correlation effects in two dimensional topological insulators
We investigate correlation effects in two dimensional topological insulators
(TI). In the first part, we discuss finite size effects for interacting systems
of different sizes in a ribbon geometry. For large systems, there are two pairs
of well separated massless modes on both edges. For these systems, we analyze
the finite size effects using a standard bosonization approach. For small
systems, where the edge states are massive Dirac fermions, we use the
inhomogeneous dynamical mean field theory (DMFT) combined with iterative
perturbation theory as an impurity solver to study interaction effects. We show
that the finite size gap in the edge states is renormalized for weak
interactions, which is consistent with a Fermi-liquid picture for small size
TIs. In the second part, we investigate phase transitions in finite size TIs at
zero temperature focusing on the effects of possible inter-edge Umklapp
scattering for the edge states within the inhomogeneous DMFT using the
numerical renormalization group. We show that correlation effects are
effectively stronger near the edge sites because the coordination number is
smaller than in the bulk. Therefore, the localization of the edge states around
the edge sites, which is a fundamental property in TIs, is weakened for strong
coupling strengths. However, we find no signs for "edge Mott insulating states"
and the system stays in the topological insulating state, which is
adiabatically connected to the non-interacting state, for all interaction
strengths smaller than the critical value. Increasing the interaction further,
a nearly homogeneous Mott insulating state is stabilized.Comment: 20 page
Deconfined Fermions but Confined Coherence?
The cuprate superconductors and certain organic conductors exhibit transport
which is qualitatively anisotropic, yet at the same time other properties of
these materials strongly suggest the existence of a Fermi surface and low
energy excitations with substantial free electron character. The former of
these features is very difficult to account for if the material possesses three
dimensional coherence, while the latter is inconsistent with a description
based on a two dimensional fixed point. We therefore present a new proposal for
these materials in which they are categorized by a fixed point at which
transport in one direction is not renormalization group irrelevant, but is
intrinsically incoherent, i.e. the incoherence is present in a pure system, at
zero temperature. The defining property of such a state is that single electron
coherence is confined to lower dimensional subspaces (planes or chains) so that
it is impossible to observe interference effects between histories which
involve electrons moving between these subspaces.Comment: 31 pages, REVTEX, 3 eps figures, epsf.tex macr
Sign reversals of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors
We study the effect of umklapp scattering on the magnetic-field-induced
spin-density-wave phases, which are experimentally observed in the
quasi-one-dimensional organic conductors of the Bechgaard salts family. Within
the framework of the quantized nesting model, we show that umklapp processes
may naturally explain sign reversals of the quantum Hall effect (QHE) observed
in these conductors. Moreover, umklapp scattering can change the polarization
of the spin-density wave (SDW) from linear (sinusoidal SDW) to circular
(helicoidal SDW). The QHE vanishes in the helicoidal phases, but a
magnetoelectric effect appears. These two characteristic properties may be
utilized to detect the magnetic-field-induced helicoidal SDW phases
experimentally.Comment: 4 pages, latex, 3 figure
Theory of Thermodynamic Magnetic Oscillations in Quasi-One-Dimensional Conductors
The second order correction to free energy due to the interaction between
electrons is calculated for a quasi-one-dimensional conductor exposed to a
magnetic field perpendicular to the chains. It is found that specific heat,
magnetization and torque oscillate when the magnetic field is rotated in the
plane perpendicular to the chains or when the magnitude of magnetic filed is
changed. This new mechanism of thermodynamic magnetic oscillations in metals,
which is not related to the presence of any closed electron orbits, is applied
to explain behavior of the organic conductor (TMTSF)ClO.Comment: 11 pages + 5 figures (included
- …