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The orientational order parameters 〈P2〉 and 〈P4〉 of the ferroelectric, de Vries–type liquid crystal 9HL have
been determined in the SmA∗ and SmC∗ phases by means of polarized Raman spectroscopy, and in the SmA∗

phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good
agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds
to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of
the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each
other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions
of different molecular axes. We have developed a systematic procedure in which we calculate the angle between
these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then
in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques
support a “sugar loaf” orientational distribution in the SmA∗ phase with no qualitative difference to conventional
smectics A. The role of individual molecular fragments in promoting de Vries–type behavior is considered.

DOI: 10.1103/PhysRevE.85.061703 PACS number(s): 61.30.Cz

I. INTRODUCTION

The smectic A (SmA or SmA∗ for a chiral phase), which
is the simplest smectic phase, is composed of molecules
with a rod-like shape stacked in two-dimensional layers.
The molecules within each layer create a two-dimensional,
liquid-like structure and the quasi-long-range one-dimensional
positional order of the molecules associated with the layering
can be specified by a density wave with the vector q parallel to
the layer normal k [1]. Similarly, the director n is defined as the
macroscopic symmetry axis which specifies the orientational
order of the molecular long axes (see Fig. 1). The long-range
orientational order is described by means of the orientational
order parameters (OOPs) which specify the orientational
distribution of the long molecular axis around the director
n. In the simplest case, the molecules are assumed to possess
an effective cylindrical symmetry, and the orientational distri-
bution function f (β) of the SmA phase depends only on the
Euler angle β between the molecular long axis and the director
n. In this case, f (β) can be expanded in terms of Legendre
polynomials PL(cos β) with coefficients proportional to the
corresponding OOP 〈PL(cos β)〉, the statistical averages of
the corresponding Legendre polynomials [2]. The first two
statistical averages 〈P2〉 and 〈P4〉 can be measured using
various different experimental methods, including polarized
Raman spectroscopy (PRS) and x-ray diffraction (XRD) [3–8].
In biaxial phases, the distribution function takes a more general
form f (β,α), which includes a dependence on the azimuthal
Euler angle α and on the biaxial order parameters [2,9].

The smectic layering in the SmA and SmC phases is
characterized by the translational order parameter �, the
amplitude of the periodic density wave describing the one-
dimensional positional order. This set of order parameters,

as well as the tilt angle θ in the SmC phase, is sufficient to
describe the molecular ordering in smectic phases.

In the orthogonal SmA phase, the director n is parallel
to the layer normal k, whereas in the SmC phase, n is
tilted by an angle θ with respect to k (see Fig. 1). With
decreasing temperature below the SmA-SmC transition, the
director n gradually tilts with respect to k, and a noticeable
layer contraction of the smectic layers is usually observed,
i.e., the layer spacing in the SmC phase is smaller than that in
the SmA phase, dSmC < dSmA [10–12]. In this case the layer
contraction is determined by the average tilt of molecular long
axes. It is worth noting, however, that even in the conventional
smectic A phase a given molecule is most probably tilted
at any moment of time since typical values of 〈P2〉 for the
SmA phase are in range 0.7–0.9, i.e., the value of 〈P2〉 is
always less than one [13,14]. This effect can be explained in
terms of the thermal orientatonal fluctuations present in any
molecular system. Therefore, in most cases the layer spacing
d is somewhat smaller than the molecular length L, even in
the SmA phase of a conventional smectic material.

In the de Vries scenario, the molecules are already tilted in
the SmA phase but the particular direction of the tilt is not spec-
ified and the phase is characterized by short-range azimuthal
correlations of the molecular axes. In the vicinity of the SmA-
SmC transition these azimuthal correlations become long-
ranged, and an order-disorder transition is observed [15–18].
The transition is accompanied by a small or almost nonexistent
smectic layer contraction, dSmA ≈ dSmC . Additional features
are observed in chiral smectic liquid crystals of de Vries–type.
First, a very strong electroclinic effect is usually observed in
the SmA∗ phase close to the transition into the SmC∗ phase
[19,20]. Second, strong soft mode fluctuations in the vicinity
of the SmA∗-SmC∗ transition distinguish such materials from
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FIG. 1. (Color online) The layer normal k, the director n, the
tilt angle, and the layer spacing d as well as the molecular average
orientation 〈β〉 are illustrated. (a) Shows the conventional picture
of the SmA phase. In contrast, in (b), in the de Vries scenario the
molecules are already tilted in the SmA phase and the SmA-SmC

occurs as an order-disorder phase transition (b) → (c). The classical
SmA-SmC phase transition is illustrated as (a) → (c).

conventional smectics [11,12,14,18,21]. These characteristics
are typical for chiral de Vries materials studied so far but, at
the same time, the particular microscopic mechanism driving
the de Vries–type SmA-SmC (SmA∗-SmC∗) transition is not
fully understood.

Orientational order parameters of different de Vries–type
smectic materials have been determined experimentally using
the birefringence technique as well as Raman and infrared
spectroscopy (IR). Hayashi et al. used polarized Raman
spectroscopy (PRS) and IR to study the well-known de Vries–
type siloxane-terminated liquid crystal TSiKN65 [22,23].
Their experiments yielded extremely low values of the OOPs,
a result they argued could be explained by taking into account
the particular molecular structure. They concluded that the
apparently low values of the order parameters are mainly
determined by the large angle βc ≈ 26◦ between the molecular
core and the long molecular axis, which is the primary axis of
the molecular inertia tensor. After making the corresponding
correction to the model, the real values of the OOPs for
TSiKN65 appeared to be significantly higher than those
measured [23]. Nevertheless, the OOPs were still relatively
low compared to the typical values obtained in conventional
smectics. This indicates that a more consistent study of the
OOPs must include an analysis of the particular molecular
structure.

Another useful method which has been used to determine
the values 〈P2〉 and 〈P4〉 in de Vries–type materials is x-ray
scattering diffraction [3,4,7,24]. X-ray diffraction originates
from the interaction between the electron density distribution
of molecules and the x-ray beam [25], while the scattered
Raman signal is the response of the inelastic interaction
between the molecular polarizability tensor and the beam of
light [26]. Consequently, x-ray and Raman experiments probe

the molecular ordering in completely different ways. The two
methods are expected to yield similar results for the OOPs
only if the particular Raman vibration axis of the molecule
coincides with the axis of the effective uniaxial structure,
which is obtained by a rotation of the whole molecule about
the primary axis of the molecular inertial tensor.

The ferroelectric liquid crystal (FLC) (S)-hexyl-lactate
compound denoted as 9HL [27], which exhibits a SmA∗-SmC∗
transition of the second order, is the subject of the present study.
Previous studies have shown that 9HL exhibits a small layer
contraction at the SmA∗-SmC∗ phase transition as well as a
big electroclinic response [18]. Dielectric studies showed that
9HL possesses strong soft mode fluctuations in the vicinity
of this transition [11]. In addition, a small α value in the
coefficients of the Landau expansion, typically observed in
de Vries–type materials, was obtained [18]. These results
enable one to consider 9HL as a material with de Vries–type
properties.

Recent NMR experiments carried out on deuterated 9HL
molecules yielded values of 〈P2〉 ≈ 0.8, which are similar to
those found in conventional smectics [28], an unexpected result
for a de Vries–type material. A similar tendency has been
observed recently in another de Vries–type system by Yoon
et al. using x-ray scattering [29]. In contrast, Chang et al.
studied FLCs showing a small layer contraction at the SmA∗-
SmC∗ transition using PRS and found relatively high values
of the OOP. Nevertheless, their results showed that the SmA∗-
SmC∗ transition is not de Vries–type but rather a SmA∗-SmC∗

α

transition [30]. In 9HL, experimental evidence (optic, electro-
optic, x ray, dielectric) of an intermediate ferroelectric SmC∗

α

phase has not been reported in Refs. [11,18,24].
On the other hand, relatively low OOPs have been obtained

in most of the studies done so far in de Vries–type FLCs. These
materials generally possess siloxane- or fluorinate-terminated
groups and high smectic order parameters [24,29,31]. The
nanoscale segregation of such groups is believed to be
responsible for the enhancement of the smectic order in these
materials [14,24]. In contrast, the molecular structure of 9HL
is similar to the structure of typical conventional smectics, and
nano-segregation of such molecules seems to be less probable.
The reasons for the de Vries–type behavior observed in 9HL
were thus not clear, motivating a detailed study of the order
parameters using different techniques in order to clarify the
properties of 9HL.

In particular, valuable information about the molecular
orientational distribution in de Vries–type materials can be
found by determining the higher order parameter 〈P4〉, which
may be used to distinguish between a conventional and a
de Vries scenario of the SmA-SmC (SmA∗-SmC∗) phase
transition [17]. In other words, a de Vries–type scenario could
be well described by either a “volcano-like” (negative 〈P4〉)
or a “sugar loaf” (high OOP) distribution function. Therefore,
9HL appears to be an exceptional candidate for experimental
study in order to gain insight into the nature of the so-called
de Vries–type behavior.

In this paper we use both polarized Raman spectroscopy
and x-ray scattering to determine the 〈P2〉 and 〈P4〉 in the
smectic liquid crystal 9HL. In the SmA∗ phase, the parameter
〈P2〉 is also estimated from measurements of the refractive
indices. In addition, the smectic order parameter � is obtained
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from x-ray experiments. Density functional theory (DFT)
molecular modeling of the 9HL was used to calculate both its
Raman spectrum and its molecular structure. The temperature
variation of the order parameters is discussed in terms of the
Maier-Saupe mean-field theory. Finally, we use the results
of x-ray and viscosity measurements to prove the existence
of a more ordered phase exhibited by this material at lower
temperatures, most likely the SmF ∗ phase.

The paper is arranged as follows: Some results of the
general theory of polarized Raman spectroscopy are discussed
in Sec. II. Section III contains a discussion of the basic
ideas used to determine the order parameters from the x-ray
measurements. The experimental details are described in
Sec. IV. Section V contains a detailed discussion of the order
parameters obtained using the methods described in Secs. II
and III. Finally, the conclusions of the work are presented in
Sec. IV. Additional information concerning refractive indices,
Raman depolarization ratio, as well as the SmF ∗ phase are
presented in the Appendixes.

II. POLARIZED RAMAN SPECTROSCOPY

Raman scattering is an inelastic scattering process that
arises as a result of the interaction of light with the derivatives
of the second rank polarizability tensor αij , with respect to the
distortion coordinate Qk in a physical medium. In general,
the Raman intensity as measured in the laboratory frame
XYZ, I ∝ (∂Qkαij )2 ≡ (α′

ij )2, can be calculated in terms of the
components of the diagonal polarizability tensor defined in
the local molecular frame x ′y ′z′ [26]. Therefore, information
about the local molecular order with respect to the laboratory
frame can be extracted by analyzing the Raman signals. In
particular, Jen et al. laid the foundations of the polarized
Raman spectroscopy in liquid crystals [5]. In this method the
order parameters 〈P2〉R and 〈P4〉R can be determined from the
depolarization ratios of two different aligned samples. In recent
years Hayashi et al. have presented a more general vision of
the PRS technique [22,23,32–34]. It has been shown that better
results could be achieved if one takes into account the whole
polarization angle dependence of the depolarization ratio
obtained from the Raman signal. Additionally, corrections
from refractive and birefringence effects are included in
their theoretical model. Even corrections from distortions
in the pitch can in principle be taken into account in the
analysis. A similar approximation to extract the OOPs from
the Raman intensity was introduced by Jones et al. [35]. The
performance of these two Raman methods is discussed in the
Appendixes.

The Raman intensity signal contains information about a
fourth rank orientational ordering tensor and, consequently, the
fourth order moments of the orientational distribution function
f (β,α,γ ) can also be determined. As shown by van Gurp and
Zannoni et al. [2,9,36], symmetry arguments can be applied to
the elements of f (β,α,γ ) and, in particular, for a liquid-crystal
medium some simplification can be accomplished. As a matter
of fact, specific uniaxial Raman vibrations of the molecule can
in principle fulfill these requirements. Under these conditions,
the distribution function can be expanded to fourth order by
using Wigner functions. In particular, for the uniaxial Raman

vibration, i.e., γ = 0, one obtains

f (α,β) = 1

8π2

(
1 + 5

2
〈P200〉RP2(β) + 9

8
〈P400〉RP4(β)

+ 30

2
〈P220〉R(1 − cos2 β) cos 2α

+ 540

8
〈P420〉R(8 cos2 β − 7 cos4 β − 1) cos 2α

+ 630

8
〈P440〉R(1 − 2 cos2 β + cos4 β) cos 4α

)
.

(1)

Here, P2 and P4 are the Legendre polynomials and 〈P200〉R
and 〈P400〉R represent the uniaxial nematic order parameters.
The biaxial OOPs 〈P220〉R , 〈P420〉R , and 〈P440〉R describe
the biaxial distribution of long molecular axes which may
be present, for instance, in tilted smectic phases. Therefore,
the polarized Raman spectroscopy can be applied to either
uniaxial or biaxial phases provided the active Raman vibration
is uniaxial and well defined. Recently this method has been
used by Southern et al. to determine a number of biaxial order
parameters in the biaxial nematic phase [37].

In general terms, the Raman intensity profile Iij measured
in the laboratory frame as a function of the orientation ω can
be expressed in terms of the derivative polarizability tensor
α′

ij of a particular Raman vibration. The Raman response also
depends on the orientation of the molecules in an element
of volume V and consequently in the distribution function
f (β,α). Thus, a general relationship between Iij , f (β,α), and
α′

ij can be expressed as [32]

Iij (ω) = I0

∫ h

0

∫∫
α,β

|α′(α,β,X; ω)|2f (α,β)dαdβdX. (2)

Here I0 is the intensity of the incoming beam and the subscripts
i,j denote that the sample is placed between crossed (i �= j ) or
parallel (i = j ) polarizers. In a planar oriented sample, ω is the
angle between the symmetry axis of α′

ij and the polarization
direction of a linearly polarized beam. The thickness of the
oriented cell is denoted by h and X represents its integration
variable.

When the full angular dependence (ω → 0◦–360◦) of the
Raman signal is recorded, the OOP can finally be determined
from the depolarization ratio DP ,

DP = Iyz(ω)

Izz(ω)
. (3)

The expression for DP is a function of ω and depends
on a number of known parameters, including the principal
refractive indices nz, nx as well as the refractive index of the
glass plate ng . Thus, the uniaxial and biaxial order parameters
can be determined by fitting the curves using a chi-squared
minimization procedure. The general mathematical form of
DP is discussed in Appendix A.

III. X-RAY SCATTERING DIFFRACTION

When a collimated x-ray wave front interacts with a
set of LC molecules distributed in the space xyz [with
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FIG. 2. (Color online) Intensity diffraction pattern generated by
x-rays scattered by a set of molecules in a volume V . The fundamental
Bragg reflection is observed in the inner part of the diffraction pattern.
The wide-angle arc χ is also shown.

orientations characterized by the distribution function f (β)],
the interference of the scattered waves in the forward direction
yields a diffraction pattern. Since the intensity distribution
I (qx,qz) obtained from this pattern represents the Fourier
transform of the pair correlation function, information about
the molecular ordering can be obtained in this way [38] (see
Fig. 2). Indeed, Leadbetter and Norris established the relation
between the intensity profile I (χ ) around the wide-angle arc
of diffuse x-ray scattering and f (β) for nematic and smectic A

liquid crystals composed of uniaxial molecules [3]. Likewise,
they found that information about the translational order,
which is observed in all liquid-crystalline smectic phases, can
be extracted from the integrated intensity of the first Bragg
reflection. This reflection is generated from the sequence of
ordered layers in the smectic phase and is observed along the
meridian qz of the diffraction pattern, as shown in Fig. 2.

Following the ideas of Leadbetter and Norris, Davidson
et al. [4] proposed a simple method of evaluating f (β) from
I (χ ). If one expands the orientational distribution function
(ODF) in terms of cos2n β functions instead of Legendre
polynomials, one obtains the following expression:

f (β) =
∞∑

n=0

f2n cos2n β. (4)

Now it is possible to establish a simple relationship between
the coefficients of the ODF and the scattering profile I (χ ) by
using the Fourier expansion

I (χ ) =
∞∑

n=0

f2n

2nn!

(2n + 1)!!
cos2n χ. (5)

Hence, the ODF can be calculated by inserting the fitted values
of the coefficients f2n into Eq. (4), and the OOP can be found
readily as the corresponding moments of f (β) by using the
following equations:

〈X〉 =
∫ π/2

0 Xf (β) sin(β)dβ∫ π/2
0 f (β) sin(β)dβ

, X = P2 or P4. (6)

On the other hand, as shown by Leadbetter et al., the smectic
order parameter � at a particular temperature T can be

obtained from the x-ray scattering intensity as follows:

� = I (T )

I0
, (7)

where I (T ) is the integrated intensity of the first Bragg reflec-
tion at temperature T and I0 represents the signal obtained from
the same reflection in the perfectly ordered smectic structure.
Kapernaum and Giesselmann recently proposed a simple
method of calculating � [39]. In this method, the intensity
I0 is determined by using an extrapolation procedure similar
to the Haller’s method of extrapolation to zero temperatures
used to determine the order parameter 〈P2〉. Thus, a fitting
procedure based on the temperature dependence of I (T )
provides the information required to estimate the smectic order
parameter �.

IV. EXPERIMENT

We have carried out Raman, x-ray, and electro-optic
experiments, and different samples have been prepared for
each particular method. For Raman studies, a liquid-crystalline
sample made of fused silica plates and rubbed with nylon has
been prepared. This cell, with 1.6 μm spacers, was prepared
for planar alignment of the liquid crystal. Another sample
with homeotropic alignment and 20 μm spacers was used to
measure the refractive indices of 9HL. For the electro-optic
experiments a 1.6 μm planar-oriented sample was used. The
planar-oriented 1.6 μm samples are rubbed in only one plate.
In the x-ray case, 9HL was filled into a Mark capillary tube
with a diameter of 0.7 mm.

The backscattered Raman signal of 9HL was measured
using the Horiba Jobin Yvon confocal Raman spectrometer
HR-800. The setup is equipped with a 634 nm linearly
polarized He-Ne laser operating at 10 mW and a CCD camera
is used to detect the Raman signal. The objective of the
microscope (50×) focuses the laser beam into the sample in
a spot around 6 μm and it is focused in a rather well aligned
area of the sample. The Raman signal was measured in the two
specific polarization states of the linearly polarized incoming
(Ii) and outgoing (Is) beams. In the first state, denoted Izz,
the linear polarizations of the incoming and outgoing beams
are parallel. In the second state, denoted Iyz, the polarizations
states are orthogonal. The sample is placed between these
polarizers inside a rotatable hot stage (Linkam). The angle
(ω) and temperature (T ) dependence of the Raman signal with
respect to the layer normal k is then obtained. The temperature
accuracy is ±0.1 ◦C.

The spectra were recorded every 10◦ ± 1◦ until a 360◦
full rotation of the hot stage was accomplished. The integrated
intensity Iij (ω), corresponding to the stretching mode of the
phenyl rings, was obtained from the experimental Raman
spectrum.

The x-ray scattering measurements were carried out with a
Bruker NanoStar diffractometer equipped with a Göbel mirror
which collimates the Cu Kα radiation. The capillary sample
was mounted in a temperature controlled brass block and
kept in a 1 T horizontal magnetic field. A two-dimensional
(2D) diffraction pattern was then recorded using a HiStar area
detector. Finally, the intensity profiles of the diffraction pattern
were extracted using the small-angle x-ray scattering (saxs)
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software from Bruker. The temperature controller system has a
resolution of ± 0.1 ◦C. Measurements of the refractive indices
of 9HL are presented in Appendix C.

V. RESULTS AND DISSCUSION

A. Molecular modeling

The theoretical Raman tensors of 9HL were calculated
with the help of the GAUSSIAN 98 package [40], using den-
sity functional theory [Becke three-parameter Lee-Yang-Parr
functional (B3LYP [41])] and a 6-31G∗ basis set. Both the
calculated and the experimental spectra are shown in Fig. 3.
Note that the frequencies shown in Fig. 3, corresponding to the
calculated spectrum, have been scaled by a factor of F = 0.98
in order to achieve a good agreement in the positions of the
Raman bands between the experimental and the calculated
Raman spectra of 9HL. This standard scaling procedure is
well described in Ref. [42].

The calculation shows that the strongest Raman band ob-
served in the experimental spectrum (1603 cm−1) corresponds
mostly to the uniaxial vibration of the three phenyl rings of
the molecule. The directions of these vibrations as well as the
principal inertial axes IZ and IX of the particular molecular
conformation used in the calculations are depicted in Fig. 4.
The inertial axis IY is perpendicular to IX and IZ . The average
direction VR of these three coupled stretching vibrations is
indeed parallel to the long inertia axis IZ .

B. Order parameter 〈P2〉R and 〈P4〉R from polarized
Raman spectroscopy

The Raman signal for the particular vibration discussed
above has been obtained for a planar oriented cell. First
the Raman intensity Izz and Iyz is measured using two
different polarization geometries. Thereafter, the full angular
dependence of the depolarization ratio DP = Iyz(ω)/Izz(ω)
with respect to the layer normal is obtained. Figure 5 shows
the different DP profiles observed at different temperatures

FIG. 3. (Color online) Experimental and calculated spectra of
9HL. The uniaxial Raman vibration due to the stretching modes of
the phenyl rings at 1603 cm−1 is shown. Note that both the main
active Raman bands and the relative intensities are reasonably well
predicted by the calculation.

FIG. 4. (Color online) Directions of the stretching modes of the
phenyl rings at 1603 cm−1 (green dashed arrows). The principal
inertia axes IZ and IX of the molecule are the blue solid lines.
The average direction of this Raman vibration VR (red dash-dotted
arrow) is parallel to the inertia axis IZ . The length of the molecular
conformation is approximately LM = 41.9 Å.

and phases of 9HL. In particular, one notes two important
variations of these profiles. First, a rotation of the DP

profile in the SmC∗ phase with respect to k is observed,
and second, a change of shape of the DP profile occurs
with decreasing temperature in the SmC∗ phase. The first
variation corresponds to a change in the direction of the Raman
uniaxial scattering tensor which is also accompanied by shift in
frequency from 1603 to 1603.5 cm−1 of its Raman vibration.
This experimental evidence suggests that the second order
SmA∗-SmC∗ transition in 9HL is accompanied by an almost
unnoticeable change in its average molecular conformation.
This indicates that the mean field the molecules feel is slightly
different in the SmA∗ and SmC∗ phases.

The second variation is related to the appearance of chevron
defects in the SmC∗ phase. These chevron defects appears
at T = 67 ◦C, i.e., 8 ◦C below the SmA∗-SmC∗ transition.
In Fig. 6 the textures, which are observed in the surface-
stabilized FLC (SSFLC) cell of 1.6 μm placed between crossed
polarizers, are presented. In the left hand part of the cell
one can distinguish the electrodes, and here the triangular
wave electric field with a frequency of 270 Hz and voltage
Vpp = 4 V is applied. In the right hand part of the cell no field
is applied, and there one can follow the SmA∗-SmC∗ transition
[Figs. 6(a) → 6(b)] accompanied by the appearance of clear
ferroelectric domains. A possibly SmA∗-SmC∗

α transition [30]
can be immediately discarded since the current response in the
electric measurements, at high and low frequencies and under
different applied voltages, showed a clear single ferroelectric
peak in the entire SmC∗ phase. At lower temperatures in the
SmC∗ phase [Fig. 6(c)], chevron defects are observed. It is
worth noting that at higher temperatures in the SmC∗ phase
(between 67 and 75 ◦C) one never observes these chevrons,
either on cooling or on heating.

The full depolarization ratio DP profile contains sufficient
information to determine the OOP 〈P2〉R and 〈P4〉R in the
SmA∗ and SmC∗ phases. Following the method proposed by
Hayashi et al. [32], one can calculate these order parameters
provided the refractive indices are known.

According to the requirements of the theoretical model,
we have measured both DP = 0.47 in the isotropic phase
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FIG. 5. (Color online) Angular dependence of the depolarization
ratio Iyz(ω)/Izz(ω) in the SmA∗ (a) T = 100 ◦C and SmC∗ phases
(b) T = 72.5 ◦C, (c) T = 65 ◦C. The thickness of the cell is 1.6 μm.
The solid lines (blue) represent the fitted curves after a chi-squared
procedure according to Eqs. (A1). Note that the depolarization ratio
profile (1603 cm−1) rotates 5◦ with respect to the layer normal k (red
dashed line connecting 0◦ and 180◦) after the SmA∗-SmC∗ transition
occurs.

FIG. 6. (Color online) Textures of 9HL in a SSFLC cell (1.6 μm)
between crossed polarizers. In the left hand part of each picture
the texture under an applied electric field, while in the right hand
part the texture without an applied electric field are shown. The
texture under the applied field does not change significantly with
the decreasing temperature from the (a) SmA∗ (T = 80 ◦C) to the
(b) SmC∗ (T = 74 ◦C) phase. At the same time, the difference in
textures is obvious in the part of the cell without applied field. The
appearance of chevron defects in the SmC∗ (T = 64 ◦C) phase are
clearly seen in (c).

(VR = 1603 cm−1 at T = 136 ◦C) and the principal refractive
indice no (=ny = nx) and ne(=nz) in the smectic phases. The
values of no and ne can be used to correct the experimental data
by taking into consideration the effects of refraction. Inclusion
of these terms in the theoretical model used to determine 〈P2〉R
and 〈P4〉R improves substantially the reliability of the results.
The refractive index of the glass was taken as ng = 1.515.
Using these values one can simultaneously determine 〈P2〉R
and 〈P4〉R for a particular temperature T . The DP fitted
curves after fitting according to the Eq. (A1) are shown in
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FIG. 7. (Color online) Uniaxial orientational order parameters
calculated from the Raman data for 9HL. The open dots and squares
represent “apparent values” of the order parameters.

Fig. 5. In Appendix D we present experimental evidence of
the existence of the intermediate SmF ∗ phase between the
SmC∗ and crystalline phases shown in Fig. 7. Note that
the OOPs in the SmC∗ phase are measured with respect to
the layer normal k; nevertheless, the value of 〈P2〉R with
respect to n could be determined after taking into account
the optical tilt angle θ [23]. The temperature variation of the
uniaxial orientational order parameters in different phases of
9HL is depicted in Fig. 7.

The OOPs determined in the SmF ∗ phase as well as in
the SmC∗ phase with chevron defects are calculated using
Eq. (A1). It is worth noting that the model used here to
determine the order parameters does not include corrections
for chevron defects, and its validity in the SmF ∗ phase, where
short-range bond correlations are present, is questionable.
Nevertheless, these calculated values correspond to a reason-
able behavior of the OOPs at the SmC∗-SmF ∗ transition. In
addition, since the spot of the focused laser beam is around
6 μm, one can focus this beam into a well-oriented region
between the lines forming the chevron defects. This reduces
the experimental error that is introduced when domains with
different orientations are probed simultaneously during the
experiment. In any case, due to these approximations the OOP
must be denoted as “apparent values,” as indicated in Fig. 7.

Additionally, we have measured the birefringence of 9HL in
the SmA∗ phase by using the interference method described in
Ref. [43]. We then applied the extrapolation method described
in Refs. [44,45] to calculate the order parameter 〈P2〉Biref

from the birefringence data. The cell used in this experiment
has a thickness of 1.6 μm. The temperature variation of
〈P2〉Biref in the SmA∗ phase is depicted in Fig. 7. Since that
parameter is measured for the core part of the molecules in
the Raman experiments, one should expect approximately the
same result from the birefringence data. Indeed, one notes
a good agreement between the values of 〈P2〉Biref and 〈P2〉R
presented in Fig. 7.

The influence of the optical power of the laser in the
determination of the OOPs has also been taken into account.
Recent measurements of the OOPs using PRS and carried

out in nematic materials have yielded a strong dependence of
〈P2〉R and 〈P4〉R on the power of the probe laser [7]. However,
in the case of the material 9HL which does not possess a
nematic phase, we did not find such a strong dependence.
In particular, 〈P2〉R and 〈P4〉R were determined in the SmA∗
phase at temperature T = 110 ◦C using optical powers of 20,
10, and 2 mW, respectively. The calculated 〈P2〉R and 〈P4〉R
values do not change significantly with increasing laser power.
A maximum deviation of ±0.05 has actually been found in the
value of these order parameters. Therefore, the optical power
used during the experiments did not influence dramatically the
values of 〈P2〉R and 〈P4〉R in the smectic phases of 9HL.

Finally, one has to find out if any significant degree of
biaxiality is present in the SmA∗ phase, since the values of
〈P2〉R and 〈P4〉R are obtained assuming uniaxial symmetry.
For this purpose, the uniaxial OOPs have been determined by
taking into account the terms proportional to the biaxial order
parameters in the distribution function Eq. (1). With the help of
Eq. (A1) one can also determine the biaxial order parameters
〈P220〉R , 〈P420〉R , and 〈P440〉R from the experimental depolar-
ization ratio DP . A minimization procedure enables one also
to find this set of order parameters. A similar procedure has
been previously successfully used by Southern et al. [37] to
obtain the biaxial order parameters using PRS. Here, we also
take into account the influence of the refractive indices in the
theoretical model [see Eq. (A1)]. For the uniaxial phases we
have assumed 〈P220〉R = 〈P420〉R = 〈P440〉R = 0 in Eq. (A1)
and therefore 〈P400〉R = 〈P4〉R and 〈P200〉R = 〈P2〉R . Some of
these results are presented in Table I.

The uniaxial order parameters 〈P2〉R and 〈P4〉R do not
change significantly when one accounts for biaxial ordering
in 9HL. Actually, the biaxial order parameters found in the
SmA∗ phase are very small and the experimental uncertainties
are much bigger than 〈P220〉R , 〈P420〉R , and 〈P440〉R in some
cases. Thus, one may safely neglect any biaxiality in the SmA∗
phase which is consistent with its generally accepted uniaxial
symmetry. In the SmC∗ phase, which is generally biaxial, we
indeed observe a small increase in the values of the biaxial
terms, but they are still too low in comparison with those
reported in the nematic biaxial phase (see Ref. [37]). Therefore
the uniaxial OOPs obtained here for 9HL (actually for the
core part of the molecule) are not significantly affected by any
biaxiality. This is in contrast to smectic de Vries materials
where biaxiality has been reported to play an important
role [22].

C. Order parameters from x-ray scattering diffraction

In a second set of experiments, the OOPs in the SmA∗
as well as the apparent OOPs in the SmC∗ phase have been
determined by means of x-ray scattering experiments. The
general procedure to obtain the OOPs from these experimental
data is described elsewhere [3,4,24] and the experimental
details of these measurements are described in our previous
paper [7]. Characteristic scattering diffraction patterns in the
SmA∗ and SmC∗ phases of 9HL are depicted in Fig. 8.

The intensity profiles I (χ ) around the wide-angle (WAXS)
arc χ are shown in Fig. 9. They are obtained, by integrating
for each particular χ along |q|, in the region limited by the two
white rings shown in Fig. 8. The function I (χ ) is then fitted

061703-7



A. SANCHEZ-CASTILLO et al. PHYSICAL REVIEW E 85, 061703 (2012)

TABLE I. Values of the uniaxial and biaxial orientational order parameters at temperatures T = 125, 100, and 85 ◦C (SmA∗) and T = 72
and 60 ◦C (SmC∗). This set of order parameters has been calculated using Eq. (A1). The thickness of the sample is 1.6 μm.

Uniaxial OOPs Biaxial OOPs

T (◦C) 〈P2〉R 〈P4〉R 〈P200〉R 〈P400〉R 〈P220〉R 〈P420〉R 〈P440〉R

SmA∗ 125 0.63 ± 0.02 0.12 ± 0.04 0.63 ± 0.04 0.11 ± 0.08 <10−3 ≈ 0 <10−3 ≈ 0 <10−3 ≈ 0
100 0.83 ± 0.02 0.54 ± 0.04 0.83 ± 0.04 0.60 ± 0.08 <10−3 ≈ 0 <10−3 ≈ 0 <10−3 ≈ 0

SmC∗ 85 0.85 ± 0.02 0.61 ± 0.04 0.85 ± 0.04 0.55 ± 0.08 <10−2 <10−2 <10−2

72 0.77 ± 0.02 0.44 ± 0.04 0.76 ± 0.04 0.43 ± 0.08 <10−2 <10−2 <10−2

60 0.78 ± 0.02 0.54 ± 0.04 0.74 ± 0.04 0.45 ± 0.08 <10−2 <10−2 <10−2

using Eq. (4) and 〈P2〉X and 〈P4〉X are directly determined
from Eqs. (5) and (6) following Leadbetter’s model [3].

One notes immediately that the shape and orientation of the
diffraction pattern observed in the SmA∗ phase are the same as
that in the SmC∗ phase (see Fig. 8). As long as the system cools
down from the SmA∗ to the SmC∗ phase one only observes
a gradual increase of the intensity around χ = 0 (around the
qy axis in Fig. 8) of the diffuse rings in the wide arc-angle.

qz

qy

SmA*

(a)

qz

qy

(b)

FIG. 8. (Color online) 2D diffraction patterns of 9HL aligned by
a vertical magnetic field at (a) T = 100 ◦C and (b) 68 ◦C. The wave
vector qz is parallel to the layer normal k. The angular distribution is
obtained from the intensity profile I (χ ).

This must correspond to a gradual increase in the orientational
order parameters. Apart from this, neither a broadening of
the WAXS signal nor a splitting of the SAXS signal, usually
observed in conventional smectics, has been detected at the
transition. This peculiar behavior has already been reported
by Lagerwall et al., in a chiral de Vries–type material and is in
contrast with what is observed in conventional smectics [24].

Since the diffraction patterns in the SmA∗ and SmC∗
phases are rather similar and because the tilt angle of 9HL
is relatively small (≈16◦), we calculated the order parameter
in the SmC∗ phase using the same uniaxial approximation as

(a)

(b)

FIG. 9. (Color online) Scattering profile I (χ ) measured in the
(a) SmA∗ (T = 100 ◦C) and (b) SmC∗ (T = 68 ◦C) phases of 9HL.
The continuous red line represents the fit from Eq. (5) and the blue
triangles trace the small-angle x-ray scattering (SAXS).
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FIG. 10. (Color online) Orientational order parameters 〈P2〉X

(squares) and 〈P4〉X (dots) obtained from x-ray experimental data
for 9HL. The open dots and squares represent apparent values of the
order parameters. The translational order parameter � (stars) in the
SmA∗ phase is also shown.

in the SmA∗ phase. Nevertheless, these parameters are denoted
as apparent values in this context and can be used only as a
first approximation. The OOPs in the SmA∗ and SmC∗ phases
determined using the x-ray experimental data are presented in
Fig. 10.

The values of the order parameters obtained from x-ray
scattering may be influenced by the formation of small
molecular clusters which are differently oriented in space,
i.e., by a possible mosaicity of the phase [46,47]. This could
degrade the quality of the x-ray signal in the wide-angle
measurements and consequently the values of 〈P2〉X and
〈P4〉X could be underestimated. SAXS measurements provide
information about the formation of the layers in the smectic
phases, with the behavior of the SAXS along the arc χ related
to the orientation and order of the layers in space. Indeed,
perfect layering in the SmA∗ phase corresponds to two narrow
peaks centered at χ = −90◦ and 90◦ in the SAXS. In contrast,
imperfect layering or a mosaicity in the smectic phase will
critically broaden those peaks. In the last case, the SAXS signal
may certainly affect the WAXS signal, and as a consequence
the values of the OOPs may be incorrect. In other words,
the WAXS and SAXS signals may, to a certain extent, be
convolved along χ . The SAXS signal, rescaled to the WAXS
signal and integrated along χ , is depicted in Fig. 9. In order
to compare both signals it has been necessary to rescale the
SAXS signal, which is approximately 50 times stronger than
the WAXS signal.

In the first approximation, we have estimated this effect
on the evaluation of the OOPs by means of a deconvolution
process of the fitted WAXS signal and the SAXS signal
(see Fig. 9). Then, the OOPs have been calculated again from
the deconvoluted WAXS signal. The results correspond to a
variation of the order parameters of about +0.04 in this case.
This variation is already included in the error bars in Fig. 10,
and therefore one can safely ignore this effect.

Finally, the translational smectic order parameter in the
SmA∗ phase was determined from the integrated intensity of
the first Bragg reflection [39]. The Gaussian peak integrated

along qz in the SAXS region, which provides information
about the smectic order, is the one observed as the first Bragg
reflection in Fig. 8. Therefore, the OOP as well as the trans-
lational order parameter can be determined simultaneously.
The results obtained for 9HL are depicted in Fig. 10. One
can readily see that the smectic order is rather high at the
SmA∗-SmC∗ transition. This result supports the idea that the
layers in the SmA∗ phase are strongly ordered and therefore
the mosaicity in the phase should be small.

D. Orientational order parameters in the context
of the Maier-Saupe theory

We now compare the experimental values of 〈P2〉 and 〈P4〉
obtained from the PRS and x-ray experiments in the uniaxial
SmA∗ [see Fig. 11(a)]. These values are also plotted in the
(〈P2〉,〈P4〉) plane [see Fig. 11(b)] and analyzed in the context
of the universal Maier-Saupe mean-field theory [48].

(a)

(b)

FIG. 11. (Color online) (a) Comparison of the orientational
order parameters measured by polarized Raman spectroscopy and
x-ray scattering in the SmA∗ phase. (b) Comparison between the
experimental ratio of the order parameters determined in the SmA∗

phase and the theoretical curve 〈P2〉 vs 〈P4〉 (solid curve) obtained
using the Maier-Saupe mean-field theory. Note that the values of 〈P4〉
are positive in all cases.
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One can readily see from either Figs. 11(a) or 11(b)
that there is a large discrepancy between the raw values of
OOP determined by using the two different experimental
techniques. In particular, the difference between the 〈P4〉R
and 〈P4〉X values is very large. At the same time, a very good
agreement between the experimental results and the universal
Maier-Saupe curve in the (〈P2〉,〈P4〉) plane is achieved
[see Fig. 10(b)]. This means that the thermodynamic rela-
tionship between 〈P2〉 and 〈P4〉 is preserved and confirms that
the ratio should be independent of the experimental method
used to determine the order parameters.

The OOPs of a particular liquid-crystalline phase can be
determined by probing different functional groups of the
molecules. Even if one uses the same experimental method,
the OOPs determined for every functional group might have
different values. This is because different groups may have
different orientations with respect to the long molecular
axis and therefore, on average, with respect to the director
n. Therefore, depending on their relative orientation, these
groups may possess a different degree of orientational order
[5,7,29,32,49–51]. Despite these differences, one may still find
a relationship between OOPs for different groups by applying
the coordinate transformation between their relative effective
orientations in space [52]. The OOPs obtained for a particular
functional group are expected to follow the Maier-Saupe
prediction for the ratio 〈P2〉/〈P4〉 provided they are measured
in a uniaxial phase.

The Raman technique provides information on the relative
average orientation of a specific functional group of the
molecule with respect to the layer normal k. In our case, the
orientation of the uniaxial stretching mode of the benzene ring
has been studied. This vibration is related to the orientation of
the molecular core which corresponds to approximately 50%
of the whole molecular volume in the case of 9HL. Then the
OOP presented in Fig. 7 characterizes the average orientational
order of the molecular core. On the other hand, the x-rays
interact with all atoms in the molecule and the OOP shown
in Fig. 10, representing the average orientational order of the
whole molecule, may be different from that of the molecular
core. Therefore, depending on the experimental method used
to determine the OOPs, one might expect small differences in
the values of OOPs. This is because each experimental method
probes features of the molecular distribution in a different way,
and different methods may even probe orientational distribu-
tions of different parts of the molecule. With this in mind, we
will give a possible interpretation of the discrepancies in the
values of OOPs obtained by the two experimental techniques
[see Fig. 11(a)] in the next section.

E. Comparison of the orientational order parameters
obtained by Raman and XRD

In this section, we discuss the discrepancies in the values of
the OOP shown in Fig. 11(a) in terms of the molecular structure
of 9HL. The x-rays interacting with the atoms of 9HL have a
perspective of the molecule similar to that depicted in Fig. 12.
Here, each atom of the molecule is represented by a sphere
with an associated partial charge.

The interference of the scattered x-ray waves from atoms
in a given molecule and from a large number of molecules in

FIG. 12. (Color online) Atomic molecular conformation of 9HL
according to the DFT calculations (see Sec. VII A). The principal
inertia axes IZ and IX of the molecule are represented by the solid
lines. The dotted box approximately presents the surface of the
averaged, rigid rod-like structure of the molecule which is generated
when the molecule rotates around its inertia axis IZ .

the sample yields the diffraction pattern presented in Fig. 8.
The hydrogen atoms are practically transparent to the x-ray
wave. Note that around 70% of the atoms in the molecular
structure of Fig. 12 are located around the core. This indicates
that the major contribution to the diffraction patterns observed
in the WAXS region should be generated from this part of the
molecule. At the same time, the contribution to the WAXS
signal coming from the atoms located in the alkyl chains
must also be taken into account since these tails represent
approximately 50% of the length of the molecule which is
visible in the x-ray spectra. The distribution of atoms in the
alkyl chains, which are normally tilted with respect to the core,
may also give rise to an additional specific molecular axis
which should be taken into consideration in the interpretation
of the x-ray data.

The interpretation of the x-ray scattering data should be
based on a reasonable molecular structure of 9HL. The results
of Secs. V A and V B suggest that the molecular structure
presented in Fig. 4 may be a good candidate for the most
probable conformation of the molecule. This model can
now be tested by estimating the temperature-dependent layer
spacing d in the SmA∗ phase using the following approximate
relation [24],

d = L〈cos β〉, (8)

and comparing it with the layer spacing determined experi-
mentally from x-ray scattering data. Equation (8) establishes
a simple relationship between the smectic layer spacing and
the average projection of the molecule of length L on the
layer normal k. Here β is the angle between the molecular
long axes and the director which is parallel to k. Using the
molecular model presented in Fig. 3 one obtains L = LM =
4.19 nm. The average 〈cos β〉 is then calculated using the OOPs
obtained from the Raman scattering data which are presented
in Fig. 11(a).

The temperature variation of the layer spacing calculated
using Eq. (8) is presented in Fig. 13, together with exper-
imental values of layer spacing d for 9HL obtained in the
previous SAXS experiments [12]. One can readily see that the
calculated layer spacing dRaman is in good agreement with the
experimental spacing dSAXS at all temperatures in the SmA∗
phase, which supports the validity of the molecular model.
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FIG. 13. (Color online) Temperature variation of the layer spac-
ing calculated using Eq. (8) and the OOPs obtained from Raman and
x-ray data in the SmA∗ phase. The molecular length is LM = 4.19 nm.
The layer spacing obtained from the position of the fundamental
Bragg reflection in the SAXS experiments of Ref. [12] is also
presented.

On the other hand, the average 〈cos β〉 can also be calculated
by using the OOPs obtained from x-ray scattering data
presented in Fig. 11(a). Using the same molecular length
L = LM = 4.19 nm, one obtains much smaller layer spacing
as shown in Fig. 13 (lower curve). A good agreement between
the calculated and the experimental values of the layer spacing
can be achieved if a larger value of the effective molecular
length (L = LV = 4.55) is used in Eq. (8).

However, even if one manipulates and elongates the
molecular model presented in Fig. 12, the maximum possible
molecular length appears to be about L

(max)
M = 4.4 nm, i.e.,

smaller than LV. This contradiction may be interpreted in the
following way.

It is reasonable to assume that the x-ray scattering intensity
is determined by some effective “molecular” length which may
be larger than the actual length of the isolated molecule due to
the effects of strong, short-range intermolecular correlations.
Indeed, the x-ray scattering intensity is essentially the integral
of the Fourier transform of the two-particle distribution
function and thus it cannot be reduced to a one-particle
property. This interpretation is consistent with the original
Leadbetter model [3,4] used to derive Eq. (5). As discussed by
Leadbetter, the orientational distribution function in Eqs. (5)
and (6) characterizes the properties of a group of neighboring
molecules which are linked by strong short-range orientational
and positional correlations.

One may also assume that the long axis of the correlated
molecular “cluster” can be tilted with respect to the long axis of
an individual molecule even if the molecules are approximately
parallel within the “cluster.” This is schematically illustrated
by a simple example of a “dimer” shown in Fig. 14, where
we assume that the most probable configuration of the two
neighboring uniaxial molecules is shown.

In this configuration the long axes of the molecules are
parallel but one molecule is shifted with respect to the other

IZ

LV

O

FIG. 14. (Color online) Schematic representation of a strongly
correlated pair of neighboring molecules where the long axis O of
the pair is tilted by the angle η ≈ 23◦ with respect to the inertia axis
IZ of the individual molecules, and the length LV of the pair along
the primary axis is larger than the molecular length LM .

along the long axis. The primary inertia axis of this molecular
pair is consequently tilted with respect to the molecular axis
by the angle η, and the length LV of the pair in this direction
is larger than the molecular length. If the corresponding
peak of the two-particle distribution function is sufficiently
high, the x-ray scatteriting experiment will mainly probe the
orientational distribution of such axes rather than those of
individual molecules.

In real materials the short-range intermolecular correlations
should be more complicated, but these unique features will be
preserved. This simple example is presented here in order to
demonstrate in principle how an additional microscopic axis
may appear.

The appearance of the microscopic directions determined
by short-range correlations may be also interpreted from the
packing point of view in the context of the Leadbetter model
used to obtain the OOPs from the WAXS experiments. One
of the main assumptions of this model is that, on average, the
atoms are cylindrically distributed around the long molecular
axis in order to form a surface of revolution which generates
the diffraction pattern. For the 9HL molecule, one finds that
the cylindrical distribution of atoms around the inertia axis IZ

creates a surface which contains too much free space inside,
and this is unfavorable from both interaction energy and close-
packing points of view, as can be seen already in Fig. 12.
Nevertheless, one can easily find at least two molecular axes
which provide a much better packing after the molecules are
rotated along these axes. The orientation of any of such axes,
however, is different from the orientation of IZ .

Following these ideas we assume that the order param-
eters calculated from the x-ray scattering data characterize
the orientational distribution of some microscopic axis Oi ,
determined by short-range correlations between the molecule
i and its nearest neighbors, which makes an angle η with the
long molecular axis IZ . At the same time, as discussed in
Secs. V A and V D, the OOPs calculated from the Raman
scattering intensity characterize the orientational distribution
of the long molecular axes. The relation between the two
sets of order parameters measured independently for two
different axes Oi and IZ can be derived by using the addition
theorem for the Legendre polynomials, as first proposed by
LaFrance et al. [52]. Assuming that the short molecular axes
are randomly distributed about the director (since the phase is
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uniaxial) one obtains

〈Pn(Oi · n)〉 = 〈Pn(IZ · n)〉Pn(η), n = 2,4, (9)

where η is the angle between the axes, 〈Pn(Oi · n)〉 represent
the order parameters obtained from x-ray scattering data, and
〈Pn(IZ · n)〉 are the order parameters derived from the Raman
scattering profile.

The angle η can be estimated in the following way.
As discussed above, the layer spacing in the SmA∗ phase
can be expressed as [see Eq. (8)] d = LV 〈cos β ′〉, where
LV = 4.55 nm and where the average 〈cos β ′〉 is calculated
using the OOPs obtained from x-ray scattering intensity
distribution. Extrapolating this equation to low temperatures
one obtains β ′ ≈ η and d ≈ LM , and hence LM ≈ LV cos η,
provided the angle η is weakly temperature dependent.
Using the value of the molecular length LM = 4.19 nm
obtained from the molecular model (see above) one concludes
that η ≈ 23◦.

Substituting this result into Eq. (9), one can rescale the
OOPs obtained by x-ray scattering and compare them with
the OOPs from the Raman data. One can readily see from
Fig. 15 that the rescaled OOPs from x-ray scattering agree
well with the OOPs measured using Raman scattering, with
the match between the 〈P4〉 values being particularly good.
One notes also that in this rescaling procedure the angle η

is not a fitting parameter but is calculated using the molec-
ular length, the temperature-dependent layer spacing, and
experimentally measured OOPs as described above. Usually,
introducing either scaling or empirical correction factors to
match simultaneously the experimental values of 〈P2〉 or 〈P4〉
results in the correct scaling of 〈P2〉 values only [6,53–56], with
the match between different 〈P4〉 values typically much worse.
The rescaling procedure described above enables us to match
the values of 〈P2〉 and 〈P4〉 simultaneously and precisely, a
result that supports the model presented above.

FIG. 15. (Color online) Comparison of the rescaled orientational
order parameters obtained from x-ray scattering and the order
parameters obtained from Raman experiments. The solid lines are
curves of tendency.

VI. CONCLUSIONS

In this paper we have presented a detailed comparative
study of the temperature variation of the orientational order
parameters 〈P2〉 and 〈P4〉 in the SmA∗ and SmC∗ phases
of 9HL by using both polarized Raman spectroscopy and
x-ray scattering diffraction. We have also made birefringence
measurements in order to get an independent estimate of
the order parameter 〈P2〉 in the SmA∗ phase, and obtained
the smectic order parameter � from x-ray experimental
data.

The values of the primary nematic order parameter 〈P2〉R ,
obtained from the Raman experiments, are in good agreement
with the values of 〈P2〉Biref obtained from birefringence mea-
surements and are also in agreement with recently published
NMR results for deuterated 9HL [28]. Generally, this is what
one might expect since all of these methods probe the order of
the molecular core of a liquid-crystal material.

The agreement between the results obtained by these
three different experimental methods indicates that Raman
spectroscopy provides reasonably accurate values of the OOPs
for this material despite some approximations involved in
the interpretation of the experimental data. In particular, the
general accuracy of the Raman method is mainly limited
by the birefringence, which cannot be neglected when the
polarization of the propagating light is not parallel to an optical
axis of the anisotropic material. The particular equations used
in this paper as well as in previous work [22,23,32–34,37] to
extract the OOPs correspond to the case of thin cells where
the phase shift between the ordinary and extraordinary wave
is negligibly small, however, birefringence corrections may
not be neglected. We have also calculated theoretical Raman
tensors of the 9HL molecule by using the density functional
theory, and the predicted Raman spectra are in very good agree-
ment with experiment. The molecular calculations indicate
that the strongest Raman band observed in the experimental
spectrum (1603 cm−1) corresponds to the uniaxial vibration of
the three phenyl rings of the molecule. The average direction
of these three coupled stretching vibrations is indeed parallel
to the long inertia axis. This band has been used in our
experiments, and thus one concludes that the OOPs obtained
from Raman data do characterize the orientational distribution
of primary molecular inertia axes.

The values of OOPs obtained from x-ray scattering appear
to be significantly lower than those obtained by the Raman
method, with a discrepancy too big to be explained by
experimental error, particularly for the order parameter 〈P4〉.
This discrepancy is generally related to the fact that the
distribution of the x-ray scattering intensity is not determined
only by molecular cores, but depends on the orientation
of the whole molecule and, in particular, on short-range
intermolecular orientational correlations and packing effects.

The difference between the values of OOPs obtained
from Raman and x-ray experiments can be explained if
one assumes that there exists an additional microscopic
axis which is determined by short-range orientational and
positional correlations between neighboring molecules and
which is tilted with respect to the average long axis of
the individual molecules. The OOPs obtained from x-ray
scattering in this case characterize the orientational distribution
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of such “cluster” axes while the OOPs obtained from Raman
experiments specify the orientational distribution of long
molecular axes, which explains why the OOPs obtained from
x-ray data appear to be smaller.

The angle between the two axes was calculated directly
by using the experimental smectic period, the molecular
length derived from the molecular calculations, and the
experimentally determined order parameters. Using this angle
the OOPs obtained from x-ray experiments was recalculated
by using a general formula which establishes a relationship
between the OOPs for two different axes. The rescaled OOP
coincide well with the values obtained from Raman data except
for a small difference in the temperature variation of 〈P2〉
and 〈P4〉, which may be related to a slow variation of the
angle η.

9HL exhibits a rather broad SmA∗ phase of about 55 ◦C.
Thus one may intuitively expect rather high OOPs at the
SmA∗-SmC∗ transition, as observed in another de Vries–
type material TSiKN65, which possesses a SmA∗ phase of
30 ◦C. As shown by Hayashi et al. [22,23], in TSiKN65 the
order parameter increases from 〈P2〉 ≈ 0.44 at the I -SmA∗
transition to 〈P2〉 ≈ 0.65 at the SmA∗-SmC∗ transition. If
the SmA∗ phase in TSiKN65 were as broad as in 9HL, one
can extrapolate their data and find the value 〈P2〉 ≈ 0.72
at this virtual SmA∗-SmC∗ transition. Thus, a value of
〈P2〉R ≈ 0.83 at the SmA∗-SmC∗ transition in 9HL is not
very surprising, taking into account that the SmA∗ phase is
so broad. Recent measurements of the OOPs of nonchiral de
Vries–type materials, determined by means of x-ray scattering
[29], found a strong difference in the 〈P2〉 values as determined
for different parts of the molecules. In particular, they have
found an order parameter of 〈P2〉 ≈ 0.7 for the hydrocarbon
part of this molecule in the SmA phase which is constant over
a temperature interval of 22 ◦C. In contrast, the value for the
siloxane tails is much lower, 〈P2〉 ≈ 0.45. All this suggests
that in some de Vries–type materials, one may find particular
molecular fragments with a relatively high orientational
order, even though the average order of the molecule may
be low.

Following the same ideas, a relative high smectic order
should be expected at the SmA∗-SmC∗ transition in 9HL
because of the broad range of the SmA∗ phase. Indeed, we have

found a smectic order parameter � ≈ 0.82. Even though this
value is not as high as that found in other de Vries materials,
it is higher than typical values found in conventional smectics
[39]. In any case, one notes that some molecular fragments
exhibit both high orientational and high positional order at
temperatures close to the SmA∗-SmC∗ transition in 9HL
while some other fragments may be weakly orientationally
ordered. The role of such individual molecular fragments in
the promotion of de Vries–type behavior is not clear. Further
experiments on similar de Vries–type materials will help to
clarify this point.

Finally, we note that both experimental techniques yield
strictly positive and relatively large values of the order
parameter 〈P4〉. The lowest values of 〈P4〉 found in our
experiments are as large as those observed in conventional
smectic liquid crystals. The measurements indicate that the
orientational distribution function in the smectic A∗ phase of
9HL is close to the conventional “sugar loaf” shape with one
pronounced maximum [17]. This is also confirmed by the
observed temperature variation of the ratio 〈P2〉/〈P4〉, which
is well described by simple Maier-Saupe theory.
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APPENDIX A: DEPOLARIZATION RATIO

Following the mathematical formalism introduced by
Hayashi et al. [32,33], in order to obtain the uniaxial OOPs
from PRS, we present here some more general expressions
including biaxial terms. These biaxial terms vanish in the
uniaxial nematic and smectic A phases according to the form
of the distribution function in Eq. (1). The depolarization
ratio including both uniaxial and biaxial order parameters
as well as the dependence on the rotation angle ω can be
expressed as (the calculations were performed with help of
MATHEMATICA 5.0)
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where the coefficients in (A1) are

A = (7 + 5〈P200〉 − 30〈P220〉 − 12〈P400〉 − 180〈P420〉),
B = (28 + 20〈P200〉 − 120〈P220〉 + 27〈P400〉 + 540〈P420〉 + 630〈P440〉),
C = (7 + 10〈P200〉 − 60〈P220〉 + 18〈P400〉 + 270〈P420〉), D = (〈P200〉 − 6〈P220〉), E = (〈P200〉 + 6〈P220〉),
F = (7 + 10〈P200〉 + 18〈P400〉). (A2)

The OOPs 〈P200〉, 〈P400〉, 〈P220〉, 〈P420〉, and 〈P440〉 are to be
determined by fitting.

Introducing the rest of the constants,

Ti = 2ng

ng + ni

, Tii = 2ni

ng + ni

, i = x,z, (A3)

a = 2α⊥ + αzz

3
, b = αzz − α⊥, (A4)

m1 = 2π (nz − ny)

λscattered
, m2 = 2π (nz − ny)

λincident
, (A5)

Riso = 3b2

45a2 + 4b2
. (A6)

Here, nz and nx (=ny) represent the principal refractive indices
of the liquid crystal and ng is the refractive index of the glass
plate. λincident and λscattered are the wavelength of the incident
and Raman scattered light, respectively. The depolarization
ratio, measured in the isotropic phase Riso, provides the relation
between a and b, which simplifies Eq. (A1). The average and
the anisotropy of the diagonal Raman tensor are expressed as a

and b in Eq. (A4), respectively. In the uniaxial approximation,
the relationship α⊥ = α′

xx = α′
yy is valid. h is the thickness of

the liquid-crystal cell.
Since the confocal Raman setup requires optical objectives

to focus and collect the light in the sample, the experimental
data I

expt.
ij must be corrected taking refraction into account

before the fitting procedure is performed [33,57,58]:

I
expt.
ij (ω) = Iij (ω)

ni(ω)2
, (A7)

where

ni(ω) = ninj√
n2

j cos2 ω + n2
i sin2 ω

for

{j = z,i = y} or {i = z,j = y}. (A8)

In the particular case 〈P220〉 = 〈P420〉 = 〈P440〉 = 0,
expression (A1) is indeed simplified and takes the form
of the equations previously presented by Hayashi et al. for
uniaxial liquid crystals [33].

APPENDIX B: ABOUT THE RAMAN MODELS
AND THE OOPs

One of the more relevant points to correctly determine the
OOPs of liquid-crystalline systems is directly concerned with
the optical anisotropy intrinsic in these materials. Based on
the results of Lax and Nelson about the electromagnetic field
in anisotropic media [57,58], Jen et al. corrected the intensity

Raman response in liquid crystals by the effects of refractive
indices [5]. Here, the optical anisotropy was introduced in
these materials to obtain more precise and reliable OOPs.
Equation (A7) expresses the general form that the correction
factor takes, (1/n2

i ).
In the case of nematics, the correction factor takes this

simple form since its mesophase resembles a more liquid-like
structure [5,35]. In contrast, smectics can be better described
as liquid-crystalline-like structures and a more adequate
correction factor must be taken into account. Hayashi et al. [32]
introduced the correct factor according to the smectic structure
[see Eq. (A8)], widely used in anisotropic crystals [59], and
depends on the angular variable ω. The influence of this
correction factor in the recent theoretical models proposed
by Jones et al. and Hayashi et al. [29,35] to obtain the OOPs
is studied here for the SmA∗ phase of 9HL. The results are
presented in Fig. 16.

One can readily see (Fig. 16) the impact of the correction
factor Eq. (A8) in the OOPs after correcting I

expt.
ij in the SmA∗

phase of 9HL. When the Hayashi et al. and Jones et al. models
are corrected by Eq. (A8), the results are quite comparable
since the difference in the OOPs is about 〈Pn〉 ≈ 0.03.
In this case, both methods yield a value 〈P2〉 ≈ 0.8 at the
SmA∗-SmC∗ phase transition, and this is the value reported at
the transition of the complete unwounded 9HL in Ref. [28].
Since we are measuring the OOPs in a SSFLC configuration,

FIG. 16. (Color online) Influence of the optical anisotropic
correction factors in the OOPs of 9HL. The models proposed by
Hayashi et al. (〈Pn〉H ) and Jones et al. (〈Pn〉J+ref ) are in good
agreement when the I

expt.
ij is corrected by the same factor, Eq. (A8).

On the contrary, if this factor is taken in a simpler form, the 〈Pn〉J

and 〈Pn〉J+ref values differ dramatically.
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the values reported here correspond to the OOPs of the
unwounded state of 9HL. On the contrary, assuming a simpler
correction factor such as the one reported for nematics [5,35],
the experimental results do not reproduce 〈P2〉 ≈ 0.8 at the
transition. In conclusion, the correction factor introduced by
Hayashi et al. [Eq. (A8)] is required in smectic liquid crystals.

In Fig. 16, one can note a small difference in the values
of the OOPs 〈Pn〉H and 〈Pn〉J+ref (〈Pn〉 ≈ 0.03) after
correcting I

expt.
ij by Eq. (A8). This is not surprising since one

can demonstrate that the model introduced by Jones et al.
corresponds to a particular case of the Hayashi et al. model.
Here, one can drastically assume that both the birefringence
(n≈ 0) and the transmission (Ti = Tii ≈ 1) coefficients have
a negligible contribution to the Raman response. Under these
conditions, the system of equations in Hayashi’s model can
be reduced to the set of equations presented by Jones et al.

In Hayashi’s model one assumes the principal components
of the Raman tensor α′

zz and α′
xx to be not temperature

dependent. Any internal variation with temperature T of the
liquid-crystal system effecting the Raman signal is taken into
account through the variation of the refractive indices nz(T )
and ny(T ) with T [i.e., n(T ), Ti(T ), Tii(T )].

In Jones’s model the differential polarizability ratio r (T )
is defined as r = α′

xx(T )/α′
zz(T ) and is introduced to include

any variation with temperature of the Raman signal in the
liquid crystal. In a first approximation, the polarizability α(T )
can be expressed in terms of the refractive indices of the
medium α[nz(T ),ny(T )] [45], so one could assume that the
derivative polarizability α′

ii(T ) follows a similar trend. Hence,
the behavior of the refractive indices with T dictates the
magnitude of the correction in the Raman intensity.

The assumption that r is temperature dependent is a quite
reasonable choice in Jones’s model. Nevertheless one must
be aware that this model takes into account the variation
of r[nz(T ,)ny(T )] through the approximation of a model
for the polarizability [45], while in Hayashi’s model these
variations comes directly from nz(T ) and ny(T ). Therefore,
small differences in the values of the OOPs obtained from
both models are expected—Fig. 16.

Finally, for a complex structure with positional and
orientational order (smectics), the direct inclusion of the
variation coming from nz(T ) and ny(T ) in Hayashi’s model
gives adequate and precise information to correct the Raman
response Iij (ω), while Jones’s model, through the variable
r [which indirectly includes the temperature dependence of
nz(T ) and ny(T )], gives a quite good approximation to obtain
the OOPs (Fig. 16) [7,35,60]. When r is assumed to be
constant in Jones’s model, i.e., nz and ny independent of T ,
Southern et al. showed that for a nematic the values of 〈P4〉
were anomalously low [60]. This confirms the importance
and necessity to include the correct temperature-dependent
parameters in the theoretical model in order to determine
correctly the OOPs of a liquid crystal.

APPENDIX C: REFRACTIVE INDICES

An important part of the present Raman study (A1) is to
know a priori the principal refractive indices of a particular
mesophase. We determined these indices experimentally in
the SmA∗ and SmC∗ phases using the scanning conoscopy

FIG. 17. (Color online) Scanning conoscopy profiles of 9HL. The
experimental retardation is shown as (a) open dots in the SmA∗

phase and (b) blue triangles in the SmF ∗ phase. The solid red line
represents the best fit to the experimental points in the SmA∗ phase. A
homeotropically aligned 20 μm cell was used in these experiments.

method proposed by Bitri et al. [61]. In general words, the
optical retardation δk is measured as a function of the scanning
angle σ . Typical interference profiles obtained by this method
as well as their fitted curves are presented in Fig. 17.

In the homeotropic cell, both the SmA∗ and helical SmC∗
phases looked optically uniaxial and exhibited rather similar
scanning profiles. As a rule, the profiles measured in an
optically uniaxial phase must have a maximum equal to 1
around σ = 0, i.e., zero retardance for normally incident light.
In contrast, it can happen that an anisotropic local structure
around the layer normal, due to the rotation of the local
biaxial structure, appears. This induces a rotation of the light
polarization and yields a maximum around σ = 0 different
from 1, as pointed out by Bitri et al. [61]. The refractive
indices obtained by using this method are presented in Fig. 18.

FIG. 18. (Color online) Principal refractive indices of 9HL
obtained using scanning conoscopy. The experimental data shown in
the SmF ∗ phase represent only the apparent values of the refractive
indices calculated in the uniaxial approximation.
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APPENDIX D: SMECTIC PHASES
OF 9HL RECONSIDERED

The first calorimetric (DSC) measurements carried out
on 9HL showed that this material exhibits only the SmA∗
and SmC∗ phases. These and other experiments showed that
the SmA∗-SmC∗ transition must be second order. The phase
sequence in 9HL was reported to be iso-130 ◦C-SmA∗-75 ◦C-
SmC∗-40 ◦C-crystalline [12,18,27,28]. Here, we present the
experimental proof of the existence of another intermediate
smectic phase in this material.

The scattering diffraction pattern shown in Fig. 19 was
measured at a temperature of 45 ◦C and is substantially
different from those observed in Fig. 8. In both figures
(Figs. 19 and 8) one clearly observes the usual broad peak
around qy ≈ 1.5 Å−1, which is commonly found in nematic
and smectics liquid crystals in the qy direction. One notes
that the signal around qz ≈ 1.5 Å−1 is obviously several times
smaller than the signal integrated along qy , and therefore a
secondary weak reflection is easier to observe around this qz.

The integrated I (qz) scattered x-ray signal along the layer
normal k is rather similar in the SmA∗ and SmC∗ phases as
shown in Fig. 20. In contrast, at temperatures below T = 56 ◦C,
the peak at qz ≈ 1.5 Å−1 becomes sharper and a secondary
peak appears at qz ≈ 1.7 Å−1. The sharpness of this peak is as
a signature of the SmF ∗ phase attributed to the packing of the
molecules inside the layers [62–64].

A phase transition from the SmC∗ phase to a more ordered
phase is also indicated by the temperature variation of the
rotational viscosity γ . Polarization reversal measurements can
also be used to determine γ in the whole interval from the
SmA∗ to the crystalline phase. The details of that method
are described in detail in Refs. [65,66]. Applying an electrical
field of 35 V/μm across a cell of 1.6 μm and a triangular wave
with a frequency of 20 Hz we have determined the temperature
variation of γ , shown in Fig. 21.

FIG. 19. (Color online) Scattering profile observed in the SmF ∗

phase of 9HL. Note the secondary outer ring in the WAXS signal as
well as the sharpness of the diffuse ring. This picture is distinctly
different from those observed in the SmA∗ and SmC∗ phases
(see Fig. 8). I (qz) is obtained integrating along the qz axis inside
the region limited by the white triangle.

FIG. 20. (Color online) Scattering profiles along qz in the SmA∗,
SmC∗, and SmF ∗ phases, respectively. Note the appearance of a
secondary peak in the SmF ∗ phase around qz = 1.7 Å−1.

The phase transition from the SmC∗ into a more ordered
phase is usually accompanied by an abrupt increase in the
rotational viscosity [67]. At first sight, the curve presented in
Fig. 21 seems to be continuous across the smectic phases.
However, a small discontinuity at the SmC∗-SmF ∗ phase
transition is visible. Instead of an abrupt change of γ at the
transition, one observes a discontinuity in the slope of the
SmC∗-SmF ∗ transition.

At 56 ◦C, the scanning conoscopy experiments also indicate
that there is a transition from the optically uniaxial helical
SmC∗ into a phase with a local biaxial structure, as shown in
Fig. 17. This information, together with the evidence presented
in the x-ray analysis, leads us to conclude that the intermediate
phase between the SmC∗ and the crystalline phase might be
the SmF ∗, and that the SmC∗-SmF ∗ transition is possibly
second order since the change in viscosity is continuous and
rather small. The revised phase sequence of 9HL is then
iso-130 ◦C-SmA∗-75 ◦C-SmC∗-56 ◦C-SmF ∗-40 ◦C-crystal.

FIG. 21. (Color online) Rotational viscosity of 9HL determined
from polarization reversal current measurements.
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[43] D. Krüerke, Ph.D. Dissertation, TU-Berlin (1999); M. Kawaida,

T. Yamaguchi, and T. Akahane, Jpn. J. Appl. Phys. 28, L1602
(1989).

[44] A. Kumar, Acta Phys. Pol., A 112, 1213 (2007).
[45] B. J. Zywucki and W. Kuczynsky, IEEE Trans. Dielectr. Electr.

Insul. 8, 512 (2001).
[46] W. M. Kaganer, B. I. Ostrovskii, and W. H. Jeu, Phys. Rev. A

44, 8158 (1991).
[47] A. Primak, M. Fisch, and S. Kumar, Phys. Rev. E 66, 051707

(2002).
[48] W. Maier and A. Saupe, Z. Naturforsch. A 15, 287 (1960).
[49] S. Y. Yakovenko, A. A. Minko, and J. Pelzl, Ferroelectrics 245,

17 (2000).
[50] M. Constant and D. Decoster, J. Chem. Phys. 76, 1708

(1982).
[51] N. Bielejewska, E. Chrzzumnicka, E. Mykowska, R. Przybylski,

M. Szybowicz, K. Wladysiak, and D. Bauman, Acta Phys. Pol.,
A 110, 777 (2006).

[52] C. P. Lafrance, A. Nabet, R. E. Prud’homme, and Michel Pézolet,
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