28 research outputs found

    Application of evolutionary rietveld method based XRD phase analysis and a self-configuring genetic algorithm to the inspection of electrolyte composition in aluminum electrolysis baths

    Get PDF
    The technological inspection of the electrolyte composition in aluminum production is performed using calibration X-ray quantitative phase analysis (QPA). For this purpose, the use of QPA by the Rietveld method, which does not require the creation of multiphase reference samples and is able to take into account the actual structure of the phases in the samples, could be promising. However, its limitations are in its low automation and in the problem of setting the correct initial values of profile and structural parameters. A possible solution to this problem is the application of the genetic algorithm we proposed earlier for finding suitable initial parameter values individually for each sample. However, the genetic algorithm also needs tuning. A self-configuring genetic algorithm that does not require tuning and provides a fully automatic analysis of the electrolyte composition by the Rietveld method was proposed, and successful testing results were presented. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Prediction of Betavoltaic Battery Parameters

    No full text
    The approaches for predicting output parameters of betavoltaic batteries are reviewed. The need to develop a strategy for predicting these parameters with sufficient accuracy for the optimization of betavoltaic cell design without using the simple trial and error approach is discussed. The strengths and weaknesses of previously proposed approaches for the prediction are considered. Possible reasons for the difference between the calculated and measured parameters are analyzed. The depth dependencies of beta particles deposited energy for Si, SiC, GaN, and Ga2O3 and 20% purity 63Ni and titanium tritide as radioisotope sources are simulated using the Monte Carlo algorithm taking into account the full beta energy spectrum, the isotropic angular distribution of emitted electrons and the self-absorption inside the radioisotope source for homogeneously distributed emitting points. The maximum short circuit current densities for the same semiconductors and radioisotope sources are calculated. The methodology allowing the prediction of betavoltaic cell output parameters with accuracy no worse than 30% is described. The results of experimental and theoretical investigations of the temperature dependence of betavoltaic cell output parameters are briefly discussed. The radiation damage by electrons with the subthreshold energy and the need to develop models for its prediction is considered

    Grown and Characterization of ZnO Aligned Nanorod Arrays for Sensor Applications

    No full text
    ZnO nanorods are promising materials for many applications, in particular for UV detectors. In the present paper, the properties of high crystal quality individual ZnO nanorods and nanorod arrays grown by the self-catalytic CVD method have been investigated to assess their possible applicationsfor UV photodetectors. X-ray diffraction, Raman spectroscopy and cathodoluminescence investigations demonstrate the high quality of nanorods. The nanorod resistivity and carrier concentration in dark is estimated. The transient photocurrent response of both as grown and annealed at 550 °C nanorod array under UV illumination pulses is studied. It is shown that annealing increases the sensitivity and decreases the responsivity that is explained by oxygen out-diffusion and the formation of near surface layer enriched with oxygen vacancies. Oxygen vacancy formation due to annealing is confirmed by an increase of green emission band intensity

    EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching

    No full text
    The electron-beam-induced current (EBIC) method is utilized in this work to visualize conductive channels formed in graphene oxide as a result of resistive switching. Using metal–insulator–semiconductor (MIS) structures, an increase in the electron beam induced current by a few orders of magnitude as compared with the EBIC signal in metal–insulator–metal (MIM) structures is achieved. The mechanism of the EBIC image formation related to the conductive channels is explained by the separation and collection of the e-beam generated excess carriers by rectifying barrier nanocontacts formed at the graphene oxide/Si interface during resistive switching. It is shown that the collection efficiency of the formed nanocontacts decreases with the beam energy, in agreement with the theoretical predictions for the Schottky-like nanocontacts. An important advantage of the EBIC method is demonstrated in its ability to monitor the generation and elimination of high density conductive channels even when the current–voltage measurements cannot detect and separate these processes. EBIC study of the dynamics of the conductive channel formation can help better understand the underlying physical mechanisms of their generation

    Low temperature stacking fault nucleation and expansion from stress concentrators in 4H-SiC

    No full text
    International audienceDespite of intensive studies during the last two decades of nucleation and expansion of Shockley-type single or adjacent stacking faults (double stacking faults) in 4H-SiC, the involved mechanisms are far from being deeply understood. Thus, in this paper, the temperature and carrier injection dependence of nucleation and expansion of these defects from local stress concentrators have been investigated by cathodoluminescence and low energy electron beam irradiation. Their corresponding behavior depends on their multiplicity. Upon annealing, the single stacking faults are found to be nucleated at lower temperature than the double stacking faults and their mobility is lower. Under electron injection at room temperature, only single stacking faults are nucleated. The involved partial dislocations dragging the stacking faults are assumed to have different nature cores. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Electrical and Recombination Properties of Polar Orthorhombic κ-Ga<sub>2</sub>O<sub>3</sub> Films Prepared by Halide Vapor Phase Epitaxy

    No full text
    In this study, the structural and electrical properties of orthorhombic κ-Ga2O3 films prepared using Halide Vapor Phase Epitaxy (HVPE) on AlN/Si and GaN/sapphire templates were studied. For κ-Ga2O3/AlN/Si structures, the formation of two-dimensional hole layers in the Ga2O3 was studied and, based on theoretical calculations, was explained by the impact of the difference in the spontaneous polarizations of κ-Ga2O3 and AlN. Structural studies indicated that in the thickest κ-Ga2O3/GaN/sapphire layer used, the formation of rotational nanodomains was suppressed. For thick (23 μm and 86 μm) κ-Ga2O3 films grown on GaN/sapphire, the good rectifying characteristics of Ni Schottky diodes were observed. In addition, deep trap spectra and electron beam-induced current measurements were performed for the first time in this polytype. These experiments show that the uppermost 2 µm layer of the grown films contains a high density of rather deep electron traps near Ec − 0.3 eV and Ec − 0.7 eV, whose presence results in the relatively high series resistance of the structures. The diffusion length of the excess charge carriers was measured for the first time in κ-Ga2O3. The film with the greatest thickness of 86 μm was irradiated with protons and the carrier removal rate was about 10 cm−1, which is considerably lower than that for β-Ga2O3

    Effect of low-energy electron irradiation on voltage-capacity curves of Al/SiO2/Si structure

    No full text
    Charging of dielectric targets by electron irradiation is a well-known phenomenon which should be taken into account in characterization of dielectric materials and coatings with electron microscopy, in electron beam lithography, in development of dielectric coatings for spacecrafts and other fields of science and engineering. Charging kinetics is strongly affected by spatial distribution of electrons and holes formed by irradiation. At the experimental electron beam energy electron penetration depth is smaller than dielectric thickness and this allows identifying the contribution of excess carrier transport to trap formation at the SiO2/Si interface. Low-energy electron beams have been shown to substantially affect C–V curve slope, i.e., to form traps at the interface. We have studied the effect of bias applied to the test structure before and after electron beam irradiation. The experiment has shown that bias of either polarity applied to the test MOS structure before low-energy electron beam irradiation practically does not affect the C–V curves of the test structure. Positive bias applied to the metallization layer during low-energy electron beam irradiation has a strong effect on the C–V curve pattern while negative bias affects the C–V curves but slightly. Study of the stability of the changes caused by electron beam irradiation has shown that the C–V curves of the test structure restore slowly even at room temperature. Application of negative bias decelerated charge relaxation

    Binder-Free MnO2/MWCNT/Al Electrodes for Supercapacitors

    No full text
    Recently, significant progress has been made in the performance of supercapacitors through the development of composite electrodes that combine various charge storage mechanisms. A new method for preparing composite binder-free MnO2/MWCNT/Al electrodes for supercapacitors is proposed. The method is based on the original technique of direct growth of layers of multi-walled carbon nanotubes (MWCNTs) on aluminum foil by the catalytic pyrolysis of ethanol vapor. Binder-free MnO2/MWCNT/Al electrodes for electrochemical supercapacitors were obtained by simply treating MWCNT/Al samples with an aqueous solution of KMnO4 under mild conditions. The optimal conditions for the preparation of MnO2/MWCNT/Al electrodes were found. The treatment of MWCNT/Al samples in a 1% KMnO4 aqueous solution for 40 min increased the specific capacitance of the active material of the samples by a factor of 3, up to 100&ndash;120 F/g. At the same time, excellent adhesion and electrical contact of the working material to the aluminum substrate were maintained. The properties of the MnO2/MWCNT/Al samples were studied by electron probe microanalysis (EPMA), Raman spectroscopy, cyclic voltammetry (CV), and impedance spectroscopy. Excellent charge/discharge characteristics of composite electrodes were demonstrated. The obtained MnO2/MWCNT/Al electrodes maintained excellent stability to multiple charge-discharge cycles. After 60,000 CVs, the capacitance loss was less than 20%. Thus, this work opens up new possibilities for using the MWCNT/Al material obtained by direct deposition of carbon nanotubes on aluminum foil for the fabrication of composite binder-free electrodes of supercapacitors

    Effect of low-energy electron irradiation on voltage-capacity curves of Al/SiO2/Si structure

    No full text
    Charging of dielectric targets by electron irradiation is a well-known phenomenon which should be taken into account in characterization of dielectric materials and coatings with electron microscopy, in electron beam lithography, in development of dielectric coatings for spacecrafts and other fields of science and engineering. Charging kinetics is strongly affected by spatial distribution of electrons and holes formed by irradiation. At the experimental electron beam energy electron penetration depth is smaller than dielectric thickness and this allows identifying the contribution of excess carrier transport to trap formation at the SiO2/Si interface. Low-energy electron beams have been shown to substantially affect C–V curve slope, i.e., to form traps at the interface. We have studied the effect of bias applied to the test structure before and after electron beam irradiation. The experiment has shown that bias of either polarity applied to the test MOS structure before low-energy electron beam irradiation practically does not affect the C–V curves of the test structure. Positive bias applied to the metallization layer during low-energy electron beam irradiation has a strong effect on the C–V curve pattern while negative bias affects the C–V curves but slightly. Study of the stability of the changes caused by electron beam irradiation has shown that the C–V curves of the test structure restore slowly even at room temperature. Application of negative bias decelerated charge relaxation
    corecore