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Abstract: The technological inspection of the electrolyte composition in aluminum production is
performed using calibration X-ray quantitative phase analysis (QPA). For this purpose, the use of
QPA by the Rietveld method, which does not require the creation of multiphase reference samples
and is able to take into account the actual structure of the phases in the samples, could be promising.
However, its limitations are in its low automation and in the problem of setting the correct initial
values of profile and structural parameters. A possible solution to this problem is the application of
the genetic algorithm we proposed earlier for finding suitable initial parameter values individually
for each sample. However, the genetic algorithm also needs tuning. A self-configuring genetic
algorithm that does not require tuning and provides a fully automatic analysis of the electrolyte
composition by the Rietveld method was proposed, and successful testing results were presented.

Keywords: x-ray powder diffraction; rietveld method; quantitative XRD phase analysis; aluminum
electrolyte; cryolite ratio; genetic algorithms; self-configuration

1. Introduction

Aluminum is normally produced by the electrolysis of alumina in molten fluorides at a
temperature of around 950 ◦C. The main component of the molten electrolyte is cryolite (Na3AlF6),
whilst aluminum fluoride, calcium fluoride, and sometimes magnesium fluoride and potassium
fluoride are added to improve the cryolite’s technological properties. During the electrolysis,
the composition of the electrolyte in the baths continuously changes and shifts from the optimum.
The maintenance of an optimal bath composition is a vital element in electrolysis technology.
An integral characteristic of the bath composition is the cryolite ratio (CR)—the ratio of molar
concentrations of sodium fluoride and aluminum fluoride (1):

CR =
C(NaF, mol. %)

C(AlF3, mol. %)
= 2 · C(NaF, mass. %)

C(AlF3, mass. %)
(1)
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The express process control of the electrolyte composition is generally performed by X-ray
diffraction quantitative phase analysis (QPA), which uses calibration curves. The cryolite ratio is
calculated according to the Equation (1). The concentrations of NaF and AlF3 are calculated using the
results of the QPA of crystallized bath samples. The phase concentrations, in turn, are calculated from
the measured intensities of their diffraction peaks. The optimal frequency of measuring the CR is once
every two days, the accuracy of the analysis is ∆(p = 0.95)~0.04, and the optimal measurement time
per sample is several minutes.

X-ray diffractometers need periodic calibration using electrolyte reference materials with
well-established phase composition [1,2]. However, it is difficult to create such reference materials,
because, firstly, they must contain all the phases from Table 1. Secondly, the crystal structures of the
phases in reference materials must match those in the electrolyte samples. Therefore, QPA by the
Rietveld method is more suitable for the process control of bath composition because this method
works without using reference materials (as is shown in References [3,4]), yet the low automation
of this method in working with such complicated samples limits its applicability. The issue is to set
such appropriate initial approximations of both the profile and structural parameters of phases that
can be quickly refined automatically by the least squares method (LSM). To address this problem,
we suggest applying a genetic algorithm which we have developed to set the initial values of the
parameters for each sample automatically [5]. This approach provides high accuracy of measuring the
cryolite ratio, but it is not yet fully applicable to the process control. This is because the algorithm must
be configured as well. In this paper, we provide a self-configuring genetic algorithm, which works
without a preliminary adjustment and performs the fully automated analysis of aluminum electrolyte
composition by the Rietveld method.

Table 1. The phase composition of typical industrial bath samples at Russian aluminum smelters.

# Phase Chemical Formula Concentration Range, wt. % CR Range

1 Cryolite Na3AlF6 0–90 >1.67
2 Chiolite Na5Al3F14 0–85 <3.0
3 Sodium fluoride NaF 0–5 >3.0
4 Ca-cryolite 1 NaCaAlF6 0–15 <3.0
5 Ca-cryolite 2 Na2Ca3Al2F14 0–20 <2.95
6 Fluorite CaF2 0–9 >2.45
7 Weberite Na2MgAlF7 0–15 <2.85
8 Neiborite NaMgF3 0–6 >2.5
9 α-, β-, γ-alumina Al2O3 2–5

References [3,4] also describe an automated analysis of aluminum electrolyte samples using the
Rietveld method. However, in these articles, a maximum of 5-phase samples of a calcium-containing
electrolyte with an insignificant content (about 0.8%) of the semi-amorphous NaCaAlF6, which difficult
to simulate by the Rietveld method, are investigated. As shown below, the proposed approach allows
analyses of 8-phase calcium- and magnesium-containing electrolytes (where a feature of Russian
aluminum production is adding magnesium fluoride up to 4–5%), with a noticeable NaCaAlF6 content
(up to 8% rel.) in an automatic mode for a comparable time. Moreover, in calcium-containing
electrolytes, magnesium can also accumulate over time from alumina.

2. Materials and Methods

2.1. The Method of Genetic Algorithm Self-Configuring

Full-profile QPA based on the Rietveld method is widely used for quantitative XRD analysis
in laboratories. However, its use for technological inspection in the industry is not yet developed
as the Rietveld method is based on a non-linear LSM convergence, which requires a very good
approximation of the initial estimations of parameters to be tuned for each sample. In the case of
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laboratory investigations, the requirements for the initial approximation are not as strict as there exists
the possibility for an interactive refinement. However, for a technological inspection in the industry,
a high level of automation and the ability to unify the analysis of a large number of samples are
strongly required. In this case, the unified initial estimations of a large amount of profile and structure
parameters do not fit well to all of them. This results in a divergence in the LSM. One of the possible
approaches to tackle this problem is the application of genetic algorithms (GAs) for the choice of an
initial approximation of sample parameters, for the evolutionary selection of perspective parameters,
and for their automated refinement with Rietveld’s LSM.

The application effectiveness of evolutionary algorithms (GAs in particular) depends on the
choice of genetic operators: Selection, recombination (crossover), mutation, and substitution. However,
the settings for an effective algorithm which ensure that acceptable results are obtained within the
shortest possible time can be different for different problems, i.e., they cannot be determined in
advance for all cases. Therefore, procedures of dynamic self-adapting and self-configuring of algorithm
settings (e.g., References [6,7]) are used here. Self-configuring is an automated choice of effective
genetic operators from a given set during an algorithmic run while solving the problem in hand.
The configuration of operators is determined stochastically based on the probability of an operator to
be used for a generating new solution. These probabilities are calculated according to their success in
previous stages. The deployment probability of the most successful operator, the one that gave the
best solutions on the previous generation, is increased, whereas the probabilities of other operators are
decreased. It makes possible the automated choice of the best configuration of operators for increasing
algorithm productivity.

The main stages of a self-configuring genetic algorithm (SGA) for unconditional optimization can
be described as follows:

1. Initially, the choice of any particular variant for each kind of operator (selection, crossover,
mutation) is equiprobable. More specifically, the probability of choosing a variant of an operator
is equal to p = 1/z, where z is the number of operator variants. It means that all variants of all
operators are used equiprobably before statistics of their effectiveness are collected.

2. On each generation, an effectiveness estimation is performed for each variant of each operator.
It is based on the mean fitness of solutions obtained with the use of this variant of this operator:
averagefitnessi = fi/ni, i = 1, 2, . . . , z, where averagefitnessi is the mean fitness of solutions obtained
with the i-th variant of the operator; fi is the fitness sum of all solutions obtained with the i-th
variant of the operator; ni is the number of solutions obtained with the i-th variant of the operator;
i = 1, . . . , z, where z is the number of operator variants.

3. For the next generation, the probability of using the most effective variant is increased by
((z − 1)·K)/(z·N) and probabilities of all other variants are decreased by K/(z·N), where N is the
number of established generations of an algorithm run, K is a constant (usually equal to 2 for
the considered problems). However, the probability of all variants cannot be lower than a given
threshold, whereas the sum of all variant probabilities must be equal to 1. When an operator
variant reaches this threshold, it will stop giving out part of its probability, and the best variant
will no longer receive it. It is organized in this way because of the possibility that a variant could
be unsuccessful on the first stages but could be very useful later on, and this could not happen if
its probability decreased to zero.

4. Operators used for the generation of a new solution are chosen stochastically according to
obtained probability distributions.

Such self-configuring frees the end user who is not an expert in evolutionary optimization
from choosing the settings of the genetic algorithm, whilst the efficiency of solving the problem
remains acceptable (with the best choice of the genetic algorithm parameters, the efficiency of
solving the problems is somewhat higher, but the selection of the GA parameters requires time
and a highly-qualified user).
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The effectiveness of an SGA can be improved by using it within the framework of the island
evolutionary (cooperative-competing) model, when several populations exist separately from each
other, only at times exchanging genetic material. This ensures a more uniform distribution of
possible solutions to the problem within the search space. Therefore, in order to solve the problem of
quantitative X-ray phase analysis, the following realization of self-configuration of the multi-population
parallel genetic algorithm was created. It generates n different populations from the models of the
substance being determined, and on each of the n computational nodes of the multi-core personal
computers (PC), an individual single-population SGA is run. At the beginning of the process, random
individuals are generated, i.e., sets of numbers consisting of the values of the refined parameters of the
Rietveld method for the generated models, which are distributed over the search space. At each of
the computational nodes, with the help of the recombination and selection operators, evolutionarily
occurs the formation of descendants with smaller objective function values. The mutation operators
randomly “scatter” them around the search space, sometimes with an increase in the value of the
objective function. A proportion of the models with a smaller objective function value are refined
using Rietveld’s LSM method. Then, as a result of the general selection, a new population of test
models is formed, i.e., descendants, on average, with better suitability. A certain number of the best
test models from the populations at work nodes are sent to the control computer node of the SGA.
All these decisions accumulated on the controlling node are sorted in decreasing order of the value
of the objective function. Periodically, some of the best solutions accumulated at a given generation
of evolution on the control node are randomly selected and randomly returned to the population at
work nodes. Such a moderate migration ensures the spread of successful solutions to populations and
improves overall convergence.

Self-configuring is realized for individual GA processes on work units in the way described
above. The standard set of genetic operators is given for each process. They are one-point, two-point,
and uniform crossover, rank-based and tournament with different size of tournament selection, and low,
average, and high selection. Probability redistribution of all operators is performed locally for each
work unit irrespective of their effectiveness on other units. This last point could improve the general
effectiveness of the algorithm but requires a separate careful study.

2.2. Full-Profile QPA by Parallel Self-Configuring Genetic Algorithms

The essence of the QPA by the Rietveld method is an iterative minimizing of the difference
between an experimental powder pattern and the calculated one by the LSM:

Φ(Pk+1) = ∑
i

wi(Yo(2Θi)−Yc(Pk + ∆Pk, 2Θi))
2 → 0, (2)

where Yo, Yc is an experimental and a calculated intensity at a position 2θi, respectively; wi is a weight
coefficient; Pk is the vector of profile, microstructural, and structural parameter values at an iteration k;
∆Pk is the parameter increments calculated by the LSM; the initial approximations are set at k = 0.

A refinable part of P composes parametrical strings that play the role of individuals that are
evolutionarily optimized by a GA. The full set of parameters P, which includes both refinable and fixed
parameters, describes a trial model of multiphase sample characteristics. In the case of the evolutionary
QPA, a range must be defined within which possible values of refinable parameters fall. The best
values found within the range by the GA are then refined by the Rietveld method.

A QPA feature is that it allows the GA to conduct the search for appropriate initial values of
parameters within wide ranges. For example, the crystal structures of phases having been found
in a sample may be used to set initial values of refinable structural parameters. Crystal structures
are normally taken from crystal structure databases. In this case, the atomic coordinates of general
crystallographic positions may be chosen as refinable parameters. In addition, the occupation of
the positions may be refined for solid solutions. Thus, the range limits the variation of both atomic
coordinates and occupation coefficients.
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After the completion of the GA process, the final solution is refined using the Rietveld method,
and the phase concentrations are calculated using the found parameter values. If the sample does not
contain an amorphous phase, the concentrations are calculated according to the following equation:

Cα = SαZα MαVα/
N

∑
j=1

SjZj MjVj, (3)

where Sa is the scale factor of a phase a, which is obtained from the calculated powder pattern Yca,
Va is the cell volume, Za is the number of structural units per cell, Ma is the molecular weight of a
phase a, and N is the number of crystalline phases in the sample.

If an amorphous phase is present in the sample, the QPA uses an internal standard [8].
Narrow search ranges pose a problem for the evolutionary full-profile QPA. In such cases,

the values of the R-factor vary insufficiently. Therefore, it becomes an unreliable selection criterion.
To improve the sensitivity of the criterion, we suggest adding bias between the measured sample’s
elemental composition and the composition calculated from the phase concentrations.

Rwp = 100 ·

(1− wCh) ·

√√√√√√∑
i

wi · [Yoi −Yci(P)]2

∑
i

wi · (Yoi)
2 + wCh ·

∑
t

wt · [∑
α

ptα · SαZα MαVα
∑
α

SαZα MαVα
− CCh

t ]
2

∑
t

wt · (CCh
t )

2

, (4)

where Ct
Ch is the concentration of an element t measured by chemical analysis; Pta is the mass fraction

of an element t in a phase a; wCh is the weight contribution of the chemical data in Rwp (normally 0.5).
The combination of the suggested variant of the full-profile Rietveld method with the parallel

SGA provides an automated QPA. The SGA uses the profile R-factor as a figure of merit to ensure a
proper selection of trial models. To perform optimization by the SGA, the special software was written
in C++ language. The ObjCryst++ library [9] was used for crystallographic calculations and Rietveld
method refinements.

2.3. Objects of Investigations

We applied the SGA to the QPA of the aluminum bath electrolyte. As the model objects, we had
chosen 24 branch reference materials used at five Russian aluminum smelters.

The objects had been chosen for the following reasons. Firstly, they were made from real
industrial baths taken at different aluminum smelters. Therefore, they were entirely consistent with
all the features of real crystallized bath samples, such as composition, impurities, and microstructure.
Secondly, the balance between the chemical and phase composition of the reference samples is fully
guaranteed by the correspondence among the results obtained by the different analytical methods used
for the certification. The mean uncertainty of the certified CR values was 0.008. Thirdly, the quantitative
phase composition significantly varies from sample to sample and covers the range of cryolite ratios
from 1.9 to 3.

The samples were ground manually in an agate mortar and then pressed in cuvettes from the
front side. The powder patterns were obtained with a Shimadzu-7000 powder diffractometer with
scintillator detector using CuKα radiation in the range 10◦ ≤ 2Θ ≤ 90◦; the exposition step was 0.01◦.
The structural models were taken from the Inorganic crystal structure database (ICSD) [10].

Since the SGA QPA is fully automated, we preset the SGA for the analysis of each sample
identically. We also compiled a standard excessive list of contained phases, which is provided in
Table 1, for each sample. The nineteen parameters listed in the Table 2 were refined for the chosen
phases. In cases when a phase was absent in a sample, its scale factor and the concentration were set to
zero. The SGA was run three times for each sample. As the QPA result, we accepted the arithmetic
mean of the phase concentrations that were established over three runs. The analysis of each sample
lasted about five minutes.
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Table 2. Parameters that were refined by the self-configuring genetic algorithm (SGA) for the bath
reference materials.

Phase List of Refinable Parameters

Na3AlF6
S, a, b, c, β, U, W, Eta0, Asym1, atomic coordinates (12 atomic positions), the texture

hkl [220] by March-Dollase model
Na5Al3F14 S, a, c, U, W, Eta0, Asym1, atomic coordinates (9 atomic positions)
NaCaAlF6 S, a, b, c, β, U, W, Eta0, Asym1

Na2Ca3Al2F14 S, a, U, W, Eta0, Asym1
CaF2 S, a, U, W, Eta0, Asym1

Na2MgAlF7 S, a, b, c, U, W, Eta0, Asym1
NaMgF3 S, a, b, c, U, W, Eta0, Asym1
α-Al2O3 S, a, b, U, W, Eta0, Asym1

where S is the scale factor; a, b, c, β are unit cell parameters; U, W is a peak FWHM by Pseudo-Voigt; Eta0 is the peak
shape parameter; Asym1 is the peak asymmetry parameter.

The research laboratories at aluminum smelters are equipped with combined XRD-XRF analyzers.
Normally, the analyzers combine an X-ray diffractometer with a fixed x-ray fluorescence channel that
provides quantification of calcium and magnesium. For this reason, we used concentrations of these
two elements to calculate the R-factor according to Reference [4].

We preset the following genetic operators for the SGA:

1. Tournament selection among 3, 5, 7, 9 trial models, range selection;
2. Two-point crossover, three-point crossover, uniform crossover;
3. Low-level mutation, average-level mutation, high-level mutation, with three standard

deviations each.

The probability of operators varied adaptively for each sample during the SGA performance. In
addition, the SGA used a local optimization by Lamarck.

3. Results

Figure 1 shows how the parallel SGA typically converges during the search for the profile and
structural parameters. The graph was plotted during the running of the full-profile QPA of a bath
reference material. The X-axis shows the number of the generation, whilst the Y axis provides the best
corresponding R-factor value that was found among the population at the managing unit. At the zero
generation, the SGA randomly generates the initial populations of the trial models.
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At the final stage of the QPA, the approximate parameter values, which have been found by the
SGA, are exposed to the Rietveld refinement. Figure 2 depicts the experimental powder pattern of
the analyzed bath reference sample and the profile that was calculated after the Rietveld refinement.
The value of the profile R-factor, which characterizes the difference between the profiles, is 8.6%.

Crystals 2018, 8, x FOR PEER REVIEW  7 of 9 

 

At the final stage of the QPA, the approximate parameter values, which have been found by the 
SGA, are exposed to the Rietveld refinement. Figure 2 depicts the experimental powder pattern of 
the analyzed bath reference sample and the profile that was calculated after the Rietveld refinement. 
The value of the profile R-factor, which characterizes the difference between the profiles, is 8.6%. 

 
Figure 2. The model powder diffraction pattern calculated by the SGA (in red) and the experimental 
powder diffraction pattern (in blue) of a bath sample. The green line shows the difference between 
the profiles. 

We propose the correspondence between the certified and calculated values of the cryolite ratio 
as the quality criterion for results of the evolutionary full-profile QPA. The cryolite ratios were 
calculated according to the Equation (1). We used the phase concentrations that were computed 
according to Equation (3) to find the shares of sodium fluorite and aluminum fluorite. Figure 3 shows 
the correspondence between the certified and calculated values of the cryolite ratio. 

Figure 3 also provides the linear regression equation (y = a + bx) and the standard deviation, 
which numerically characterize the correspondence. Therefore, the bias of b from 1 characterizes the 
systematic error of the results, while the standard deviation describes the random error. 

 
Figure 3. The correspondence between the calculated and certified CR values for the branch reference 
materials. Certified CR is the certified values; SGA CR is the calculated values; SD is the standard 
deviation. 

Figure 2. The model powder diffraction pattern calculated by the SGA (in red) and the experimental
powder diffraction pattern (in blue) of a bath sample. The green line shows the difference between
the profiles.

We propose the correspondence between the certified and calculated values of the cryolite ratio as
the quality criterion for results of the evolutionary full-profile QPA. The cryolite ratios were calculated
according to the Equation (1). We used the phase concentrations that were computed according
to Equation (3) to find the shares of sodium fluorite and aluminum fluorite. Figure 3 shows the
correspondence between the certified and calculated values of the cryolite ratio.

Figure 3 also provides the linear regression equation (y = a + bx) and the standard deviation,
which numerically characterize the correspondence. Therefore, the bias of b from 1 characterizes the
systematic error of the results, while the standard deviation describes the random error.
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4. Discussion

The calculated values match the certified values with an accuracy of SD = 0.035, and all the results
fall within the 95% confidence interval. The linear regression equation is close to a y = x form because
the a coefficient is statistically insignificant. However, the b coefficient is 3.5 relative per cent higher
than 1. This indicates that the results of the evolutionary full-profile QPA are slightly overestimated.

An analysis shows that this systematic error is caused by the overestimation of the Na3AlF6

concentration. This fact proves that the automated Rietveld method that uses SGA data refines the
structure of this phase ineffectively. It appears that the structure distorts due to the incomplete
transition of the Na3AlF6 high-temperature modification to the low-temperature modification. Such an
effect is a result of the nonequilibrium crystallization of bath samples, which is caused by a specific
sampling procedure being used at aluminum smelters. In addition, the structural distortion inflates
the standard deviation of the results.

Overall, the results meet the technological requirements that are set for the accuracy of CR analysis
at the smelters. Therefore, we recommend the automated evolutionary method of QPA for the express
control of bath composition. However, prior to implementing the method in industry, we must improve
its performance by eliminating the causes of the systematic error.
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