184 research outputs found

    The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress

    Get PDF
    Date palms are able to grow under diverse abiotic stress conditions including in saline soils, where microbial communities may be help in the plant’s salinity tolerance. These communities able to produce specific growth promoting substances can enhance date palm growth in a saline environment. However, these communities are poorly defined. In the work reported here, the date palm endophytic bacterial and fungal communities were identified using the pyrosequencing method, and the microbial differential abundance in the root upon exposure to salinity stress was estimated. Approximately 150,061 reads were produced from the analysis of six ribosomal DNA libraries, which were prepared from endophytic microorganisms colonizing date palm root tissues. DNA sequence analysis of these libraries predicted the presence of a variety of bacterial and fungal endophytic species, some known and others unknown. The microbial community compositions of 30% and 8% of the bacterial and fungal species, respectively, were significantly (p ≤ 0.05) altered in response to salinity stress. Differential enrichment analysis showed that microbe diversity indicated by the Chao, Shannon and Simpson indices were slightly reduced, however, the overall microbial community structures were not significantly affected as a consequence of salinity. This may reflect a buffering effect by the host plant on the internal environments that these communities are colonizing. Some of the endophytes identified in this study were strains that were previously isolated from saline and marine environments. This suggests possible interactions with the plant that are favorable to salinity tolerance in date palm. [Int Microbiol 19(3):143-155 (2016)]Keywords: Phoenix dactylifera · endophytes · salt stres

    Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description

    Get PDF
    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3‐D cloud‐tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds\u27 trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II

    In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems

    Full text link
    Using a novel technique, we make quantitative measurements of the spin polarization of dilute (3.4 to 6.8*10^{10} cm^{-2}) GaAs (311)A two-dimensional holes as a function of an in-plane magnetic field. As the field is increased the system gradually becomes spin polarized, with the degree of spin polarization depending on the orientation of the field relative to the crystal axes. Moreover, the behavior of the system turns from metallic to insulating \textit{before} it is fully spin polarized. The minority-spin population at the transition is ~8*10^{9} cm^{-2}, close to the density below which the system makes a transition to an insulating state in the absence of a magnetic field.Comment: 4 pages with figure

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes

    Full text link
    Electron scattering rates in metallic single-walled carbon nanotubes are studied using an atomic force microscope as an electrical probe. From the scaling of the resistance of the same nanotube with length in the low and high bias regimes, the mean free paths for both regimes are inferred. The observed scattering rates are consistent with calculations for acoustic phonon scattering at low biases and zone boundary/optical phonon scattering at high biases.Comment: 4 pages, 5 figure

    Ringed sideroblasts in βâ thalassemia

    Full text link
    Symptomatic βâ thalassemia is one of the globally most common inherited disorders. The initial clinical presentation is variable. Although common hematological analyses are typically sufficient to diagnose the disease, sometimes the diagnosis can be more challenging. We describe a series of patients with βâ thalassemia whose diagnosis was delayed, required bone marrow examination in one affected member of each family, and revealed ringed sideroblasts, highlighting the association of this morphological finding with these disorders. Thus, in the absence of characteristic congenital sideroblastic mutations or causes of acquired sideroblastic anemia, the presence of ringed sideroblasts should raise the suspicion of βâ thalassemia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136352/1/pbc26324.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136352/2/pbc26324_am.pd

    Migration and social mobility between Argentina and Spain : climbing the social hierarchy in the transnational space

    Get PDF
    Production of INCASI Project H2020-MSCA-RISE-2015 GA 691004This chapter analyses the relationship between migration and social mobility in Argentina and Spain from a transnational perspective focusing on two dimensions: the patterns of intergenerational social mobility of immigrants and natives in both countries; the social mobility strategies and trajectories of Galicians families in Buenos Aires and Argentinians, of Galician origin, who migrated to Galicia after the 2001 crisis. The chapter begins by contextualizing the migratory trends in Europe and Latin America. This is followed by a comparative study of how immigration impacts on the class structure and social mobility patterns in Argentina and Spain. Quantitative analysis techniques are used to study the intergenerational social mobility rates. The statistical analysis of stratification and social mobility surveys have been benchmarked against previous studies conducted in Argentina (Germani, G., Movilidad social en la sociedad industrial. EUDEBA, Buenos Aires, 1963; Dalle, P., Movilidad social desde las clases populares. Un estudio sociológico en el Área Metropolitana de Buenos Aires (1960-2013). CLACSO/Instituto de Investigaciones Gino Germani-UBA/CICCUS, Buenos Aires, 2016) and Spain (Fachelli, S., & López-Roldán, P., Revista Española de Sociología 26:1-20, 2017). Secondly, qualitative research methods are used to consider the social mobility strategies and class trajectories of migrant families. We analyse two fieldworks, developed in the framework of other research projects (based on 44 biographical and semi-structured interviews). These case studies were carried out with Galicians that migrated to Argentina between 1940 and 1960 and Argentinians, of Galician origin, who migrated to Galicia after the 2001 crisis

    The Parallel Magnetoconductance of Interacting Electrons in a Two Dimensional Disordered System

    Full text link
    The transport properties of interacting electrons for which the spin degree of freedom is taken into account are numerically studied for small two dimensional diffusive clusters. On-site electron-electron interactions tend to delocalize the electrons, while long-range interactions enhance localization. On careful examination of the transport properties, we reach the conclusion that it does not show a two dimensional metal insulator transition driven by interactions. A parallel magnetic field leads to enhanced resistivity, which saturates once the electrons become fully spin polarized. The strength of the magnetic field for which the resistivity saturates decreases as electron density goes down. Thus, the numerical calculations capture some of the features seen in recent experimental measurements of parallel magnetoconductance.Comment: 10 pages, 6 figure

    Metallic behavior and related phenomena in two dimensions

    Full text link
    For about twenty years, it has been the prevailing view that there can be no metallic state or metal-insulator transition in two dimensions in zero magnetic field. In the last several years, however, unusual behavior suggestive of such a transition has been reported in a variety of dilute two-dimensional electron and hole systems. The physics behind these observations is presently not understood. We review and discuss the main experimental findings and suggested theoretical models.Comment: To be published in Rev. Mod. Phy

    Clinical considerations and key issues in the management of patients with Erdheim-Chester Disease: A seven case series

    Get PDF
    Background: Erdheim-Chester Disease (ECD), a non Langerhans' cell histiocytosis of orphan nature and propensity for multi-systemic presentations, comprises an intricate medical challenge in terms of diagnosis, treatment and complication management. Objectives: The objectives are to report the clinical, radiological and pathological characteristics, as well as cardinal therapeutic approaches to ECD patients and to provide clinical analyses of the medical chronicles of these complex patients. Methods: Patients with biopsy proven ECD were audited by a multi-disciplinary team of specialists who formed a coherent timeline of all the substantial clinical events in the evolution of their patients' illness. Results: Seven patients (five men, two women) were recruited to the study. The median age at presentation was 53 years (range: 39 to 62 years). The median follow-up time was 36 months (range: 1 to 72 months). Notable ECD involvement sites included the skeleton (seven), pituitary gland (seven), retroperitoneum (five), central nervous system (four), skin (four), lungs and pleura (four), orbits (three), heart and great vessels (three) and retinae (one). Prominent signs and symptoms were fever (seven), polyuria and polydipsia (six), ataxia and dysarthria (four), bone pain (four), exophthalmos (three), renovascular hypertension (one) and dyspnea (one). The V600E BRAF mutation was verified in three of six patients tested. Interferon-α treatment was beneficial in three of six patients treated. Vemurafenib yielded dramatic neurological improvement in a BRAF mutated patient. Infliximab facilitated pericardial effusion volume reduction. Cladribine improved cerebral blood flow originally compromised by perivenous lesions. Conclusions: ECD is a complex, multi-systemic, clonal entity coalescing both neoplastic and inflammatory elements and strongly dependent on impaired RAS/RAF/MEK/ERK signaling
    corecore