28 research outputs found

    High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder

    Full text link
    Recent progress in quantum algorithms and hardware indicates the potential importance of quantum computing in the near future. However, finding suitable application areas remains an active area of research. Quantum machine learning is touted as a potential approach to demonstrate quantum advantage within both the gate-model and the adiabatic schemes. For instance, the Quantum-assisted Variational Autoencoder has been proposed as a quantum enhancement to the discrete VAE. We extend on previous work and study the real-world applicability of a QVAE by presenting a proof-of-concept for similarity search in large-scale high-dimensional datasets. While exact and fast similarity search algorithms are available for low dimensional datasets, scaling to high-dimensional data is non-trivial. We show how to construct a space-efficient search index based on the latent space representation of a QVAE. Our experiments show a correlation between the Hamming distance in the embedded space and the Euclidean distance in the original space on the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. Further, we find real-world speedups compared to linear search and demonstrate memory-efficient scaling to half a billion data points

    Numbers in the Blind's “Eye”

    Get PDF
    Background: Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC) effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? Principal Findings: Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind). Conclusions: These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population

    Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Get PDF
    International audienceContext. Protoplanetary disks, interstellar clouds, and active galactic nuclei, contain X-ray dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims. Our goal is to study the effects of hard X-rays on cosmic dust analogs via in-situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments, and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods. We prepared enstatite (MgSiO 3) nanograins, analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results. We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 10 27 eV cm −2. Pure crystalline silicate grains (without resin) did not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyzed the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions. Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs, revealed the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper-limit to the effect of X-rays on the structure of cosmic silicates

    Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    No full text
    [Context] Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now.[Aims] Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure.[Methods] We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time.[Results] We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure.[Conclusions] Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates

    Hepatocyte growth factor measurement in AL amyloidosis.

    No full text
    International audienceHepatocyte growth factor (HGF) is a pro-angiogenic cytokine activated by tissue-type plasminogen activator (tPA) that might play a role in the progression of multiple myeloma (MM). Preliminary studies indicated that serum HGF levels were higher in patients with AL amyloidosis (AL) compared to those with MM. The aim of the present study was to determine whether HGF is a relevant marker of diagnosis and prognosis in AL. HGF serum levels were measured at diagnosis in patients with monoclonal gammopathy (MG) without AL (76 controls), or with biopsy-proven systemic AL (69 patients). HGF serum levels were significantly higher in patients with AL compared to controls, respectively, 11.2 ng/mL [min: 0.95-max: 200.4] versus 1.4 ng/mL [min: 0.82-max: 6.2] (p < 0.0001). The threshold value of 2.2 ng/mL conferred optimal sensitivity (88%) and specificity (95%) to differentiate AL and monoclonal gammopathy of undetermined significance (MGUS) patients. Serum HGF concentrations were correlated positively with the severity of cardiac involvement and the serum level of monoclonal light chains. These data suggest that HGF measurement could be used in patients with MG to detect AL or to reinforce a clinical suspicion of AL and to guide indications for diagnostic tissue biopsies
    corecore