8 research outputs found

    Dexmedetomidine protects against lipid peroxidation and erythrocyte deformability alterations in experimental hepatic ischemia reperfusion injury

    Get PDF
    Background: Hepatic ischemia–reperfusion injury is a common clinical problem in hepatic surgery and transplantation. Several cellular and tissue structural and functional alterations are observed in such injury. The aim of this study was to evaluate the effect of dexmedetomidine on lipid peroxidation and erythrocyte deformability during ischemia–reperfusion injury in rats. Methods: Twenty-four Wistar Albino rats were randomly separated into three groups as control (C), ischemia–reperfusion injury (I/R) and dexmedetomidine group (I/R-D). Ischemia was induced with portal clampage for 45 min and reperfusion period was 45 min after declampage. Group I/R-D received dexmedetomidine 100 µg/kg i.p. 30 min before portal clampage. Serum malondialdehyde and superoxide dismutase activities to document lipid peroxidation and erythrocyte deformability index were investigated. Results: Serum superoxide dismutase and malondialdehyde activity levels were significantly higher and erythrocyte deformability index was decreased in hepatic ischemia–reperfusion group. However, these changes were observed to be prevented with dexmedetomidine treatment when given before portal clampage. Conclusion: These findings clearly indicate that erythrocyte deformability index is decreased in hepatic ischemia reperfusion injury and has a potential role to prevent these alterations. The protective effect of dexmedetomidine on hepatic I/R injury is also decreased lipid peroxidation. Further experimental and clinical investigations may clarify the molecular mechanisms and clinical significance of these findings
    corecore