10 research outputs found

    Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization;

    Get PDF
     Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules

    Finding a right place to cut: How katanin is targeted to cellular severing sites

    No full text
    Microtubule severing by katanin plays key roles in generating various array patterns of dynamic microtubules, while also responding to developmental and environmental stimuli. Quantitative imaging and molecular genetic analyses have uncovered that dysfunction of microtubule severing in plant cells leads to defects in anisotropic growth, division and other cell processes. Katanin is targeted to several subcellular severing sites. Intersections of two crossing cortical microtubules attract katanin, possibly by using local lattice deformation as a landmark. Cortical microtubule nucleation sites on preexisting microtubules are targeted for katanin-mediated severing. An evolutionary conserved microtubule anchoring complex not only stabilises the nucleated site, but also subsequently recruits katanin for timely release of a daughter microtubule. During cytokinesis, phragmoplast microtubules are severed at distal zones by katanin, which is tethered there by plant-specific microtubule-associated proteins. Recruitment and activation of katanin are essential for maintenance and reorganisation of plant microtubule arrays

    An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites

    No full text
    Microtubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity
    corecore