288 research outputs found
Discrete embedded solitons
We address the existence and properties of discrete embedded solitons (ESs),
i.e., localized waves existing inside the phonon band in a nonlinear
dynamical-lattice model. The model describes a one-dimensional array of optical
waveguides with both the quadratic (second-harmonic generation) and cubic
nonlinearities. A rich family of ESs was previously known in the continuum
limit of the model. First, a simple motivating problem is considered, in which
the cubic nonlinearity acts in a single waveguide. An explicit solution is
constructed asymptotically in the large-wavenumber limit. The general problem
is then shown to be equivalent to the existence of a homoclinic orbit in a
four-dimensional reversible map. From properties of such maps, it is shown that
(unlike ordinary gap solitons), discrete ESs have the same codimension as their
continuum counterparts. A specific numerical method is developed to compute
homoclinic solutions of the map, that are symmetric under a specific reversing
transformation. Existence is then studied in the full parameter space of the
problem. Numerical results agree with the asymptotic results in the appropriate
limit and suggest that the discrete ESs may be semi-stable as in the continuous
case.Comment: A revtex4 text file and 51 eps figure files. To appear in
Nonlinearit
Gap solitons in Bragg gratings with a harmonic superlattice
Solitons are studied in a model of a fiber Bragg grating (BG) whose local
reflectivity is subjected to periodic modulation. The superlattice opens an
infinite number of new bandgaps in the model's spectrum. Averaging and
numerical continuation methods show that each gap gives rise to gap solitons
(GSs), including asymmetric and double-humped ones, which are not present
without the superlattice.Computation of stability eigenvalues and direct
simulation reveal the existence of completely stable families of fundamental
GSs filling the new gaps - also at negative frequencies, where the ordinary GSs
are unstable. Moving stable GSs with positive and negative effective mass are
found too.Comment: 7 pages, 3 figures, submitted to EP
Anomalous magnetotransport in (YGd)Co alloys: interplay of disorder and itinerant metamagnetism
New mechanism of magnetoresistivity in itinerant metamagnets with a
structural disorder is introduced basing on analysis of experimental results on
magnetoresistivity, susceptibility, and magnetization of structurally
disordered alloys (YGd)Co. In this series, YCo is an
enhanced Pauli paramagnet, whereas GdCo is a ferrimagnet (T=400
K) with Gd sublattice coupled antiferromagnetically to the itinerant Co-3d
electrons. The alloys are paramagnetic for . Large positive
magnetoresistivity has been observed in the alloys with magnetic ground state
at temperatures TT. We show that this unusual feature is linked to
a combination of structural disorder and metamagnetic instability of itinerant
Co-3d electrons. This new mechanism of the magnetoresistivity is common for a
broad class of materials featuring a static magnetic disorder and itinerant
metamagnetism.Comment: 7 pages 7 figure
Anomalous resistivity and thermopower of the spinel-type compounds CuIr2S4 and CuIr2Se4
Resistivity (Ï) and thermopower (S) of spinel-type compounds CuIr2S4 and CuIr2Se4 have been measured at temperatures from 2 to 900 K under magnetic field from 0 to 15 T. The thermopower is positive in the metallic phase of both compounds at high temperatures, as well as in the low-temperature insulating state of CuIr2S4. The positive thermopower of the insulating phase implies p-type charge carriers, in agreement with the recent photoemission results. The low-temperature resistivity of CuIr2S4 is in good agreement with the Efros-Shklovskii variable-range hopping conductivity mechanism: Ï=Ï0exp[(T*/T)1/2]. The most striking result is that the resistivity of the metallic phases is well described by an exponential-type temperature dependence in a wide temperature range from 2 K to at least 900 K. This unusual result for metals type of the resistivity temperature dependence, as well as other features in the transport properties, imply a nonconventional conductivity mechanism. The magnetoresistivity ÎÏ is positive and proportional to H2, while magnetothermopower ÎS=S(H,T)-S(0,T) is very small for both compounds at all temperature
A study of low-energy transfer orbits to the Moon: towards an operational optimization technique
In the Earth-Moon system, low-energy orbits are transfer trajectories from
the earth to a circumlunar orbit that require less propellant consumption when
compared to the traditional methods. In this work we use a Monte Carlo approach
to study a great number of such transfer orbits over a wide range of initial
conditions. We make statistical and operational considerations on the resulting
data, leading to the description of a reliable way of finding "optimal" mission
orbits with the tools of multi-objective optimization
On Optimal Two-Impulse Earth-Moon Transfers in a Four-Body Model
In this paper two-impulse Earth-Moon transfers are treated in the restricted four-body problem with the Sun, the Earth, and the Moon as primaries. The problem is formulated with mathematical means and solved through direct transcription and multiple shooting strategy. Thousands of solutions are found, which make it possible to frame known cases as special points of a more general picture. Families of solutions are defined and characterized, and their features are discussed. The methodology described in this paper is useful to perform trade-off analyses, where many solutions have to be produced and assessed
Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma
International audienceBackground: Angiogenesis is essential for tumour growth and metastasis. There are conflicting reports as to whether microvessel density (MVD) using the endothelial marker CD105 (cluster of differentiation molecule 105) in clear-cell renal cell carcinomas (ccRCC) is associated with prognosis. Recently, CD105 has been described as a RCC cancer stem cell marker.Methods: A total of 102 ccRCC were analysed. Representative tumour sections were stained for CD105. Vascularity (endothelial CD105) was quantified by MVD. The immunohistochemistry analysis detected positive (if present) or negative (if absent) CD105 tumoral staining. This retrospective population-based study was evaluated using KaplanâMeier method, t-test and Cox proportional hazard model.Results: We found that the expression of endothelial CD105 (MVD) negatively correlated with nuclear grade (P<0.001), tumour stage (P<0.001) and Leibovitch score (P<0.001), whereas the expression of tumoral CD105 positively correlated with these three clinicopathological factors (P<0.001). In multivariate analysis, tumoral CD105 was found to be an independent predictor of poor overall survival (P=0.002).Conclusions: We have shown for the first time that tumoral CD105 is an independent predictive marker for death risk and unfavourable prognosis in patients with ccRCC after curative resection
Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma
BACKGROUND: Angiogenesis is one of the mechanisms most critical to the postoperative recurrence and metastasis of hepatocellular carcinoma (HCC). Thus, finding the molecular markers associated with angiogenesis may help identify patients at increased risk for recurrence and metastasis of HCC. This study was designed to investigate whether CD105 or CD34 could serve as a valid prognostic marker in patients with HCC by determining if there is a correlation between CD105 or CD34 expression and postoperative recurrence or metastasis. METHODS: Immunohistochemical staining for the CD105, CD34 and vascular endothelial growth factor (VEGF) antibodies was performed in 113 HCC tissue specimens containing paracarcinomatous tissue and in 14 normal liver tissue specimens. The quantitation of microvessels identified by anti-CD105 and anti-CD34 monoclonal antibodies and the semiquantitation of VEGF expression identified by anti-VEGF monoclonal antibody were analyzed in conjunction with the clinicopathological characteristics of the HCC and any available follow-up information about the patients from whom the specimens were obtained. RESULTS: CD105 was not expressed in the vascular endothelial cells of any normal liver tissue or paracarcinomatous liver tissue but was expressed in the vascular endothelial cells of all HCC tissue. In contrast, CD34 was expressed in the vascular endothelial cells of normal liver tissue, paracarcinomatous tissue, and HCC tissue in the following proportions of specimens: 86.7%, 93.8%, and 100%, respectively. The microvascular densities (MVDs) of HCC determined by using an anti-CD105 mAb (CD105-MVD) and an anti-CD34 mAb (CD34-MVD), were 71.7 ± 8.3 (SD) and 106.3 ± 10.4 (SD), respectively. There was a significant correlation between CD105-MVD and CD34-MVD (r = 0.248, P = 0.021). Although CD34-MVD was significantly correlated with VEGF expression (r = 0.243, P = 0.024), CD105-MVD was more closely correlated (r = 0.300, P= 0.005). The correlation between microscopic venous invasion and CD105-MVD, but not CD34-MVD, was also statistically significant (r = 0.254, P = 0.018). Univariate analysis showed that CD105-MVD was significantly correlated with the 2-year overall survival rate (P = 0.014); CD34-MVD was not (P = 0.601). Multivariate analysis confirmed that CD105-MVD was an independent prognostic factor and that CD34-MVD was not. CONCLUSION: The anti-CD105 mAb is an ideal instrument to quantify new microvessels in HCC as compared with anti-CD34 mAb. CD105-MVD as compared with CD34-MVD is relevant a significant and independent prognostic indicator for recurrence and metastasis in HCC patients
- âŠ