2,427 research outputs found

    Non-perturbative equivalences among large N gauge theories with adjoint and bifundamental matter fields

    Full text link
    We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.Comment: 40 pages, JHEP styl

    From Instantons to Sphalerons: Time-Dependent Periodic Solutions of SU(2)-Higgs Theory

    Get PDF
    We solve numerically for periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. In the limit of short periods the solutions approach tiny instanton-anti-instanton superpositions while, for longer periods, the solutions merge with the static sphaleron. A previously predicted bifurcation point, where two branches of periodic solutions meet, appears for Higgs boson masses larger than 3.091MW3.091 M_W.Comment: 14 pages, RevTeX with eps figure

    N-dimensional electron in a spherical potential: the large-N limit

    Full text link
    We show that the energy levels predicted by a 1/N-expansion method for an N-dimensional Hydrogen atom in a spherical potential are always lower than the exact energy levels but monotonically converge towards their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared to the exact numerical spectrum.Comment: 8 pages, 1 figur

    One-Loop Quantum Energy Densities of Domain Wall Field Configurations

    Get PDF
    We discuss a simple procedure for computing one-loop quantum energies of any static field configuration that depends non-trivially on only a single spatial coordinate. We specifically focus on domain wall-type field configurations that connect two distinct minima of the effective potential, and may or may not be the solutions of classical field equations. We avoid the conventional summation of zero-point energies, and instead exploit the relation between functional determinants and solutions of associated differential equations. This approach allows ultraviolet divergences to be easily isolated and extracted using any convenient regularization scheme. Two examples are considered: two-dimensional Ď•4\phi^4 theory, and three-dimensional scalar electrodynamics with spontaneous symmetry breaking at the one-loop level.Comment: RevTex, 29 pages, 1 figure, minor corrections, references adde

    An improved time-dependent Hartree-Fock approach for scalar \phi^4 QFT

    Full text link
    The λϕ4\lambda \phi^4 model in a finite volume is studied within a non-gaussian Hartree-Fock approximation (tdHF) both at equilibrium and out of equilibrium, with particular attention to the structure of the ground state and of certain dynamical features in the broken symmetry phase. The mean-field coupled time-dependent Schroedinger equations for the modes of the scalar field are derived and the suitable procedure to renormalize them is outlined. A further controlled gaussian approximation of our tdHF approach is used in order to study the dynamical evolution of the system from non-equilibrium initial conditions characterized by a uniform condensate. We find that, during the slow rolling down, the long-wavelength quantum fluctuations do not grow to a macroscopic size but do scale with the linear size of the system, in accordance with similar results valid for the large NN approximation of the O(N) model. This behavior undermines in a precise way the gaussian approximation within our tdHF approach, which therefore appears as a viable mean to correct an unlikely feature of the standard HF factorization scheme, such as the so-called ``stopping at the spinodal line'' of the quantum fluctuations. We also study the dynamics of the system in infinite volume with particular attention to the asymptotic evolution in the broken symmetry phase. We are able to show that the fixed points of the evolution cover at most the classically metastable part of the static effective potential.Comment: Accepted for publication on Phys. Rev.

    On Axially Symmetric Solutions in the Electroweak Theory

    Full text link
    We present the general ansatz, the energy density and the Chern-Simons charge for static axially symmetric configurations in the bosonic sector of the electroweak theory. Containing the sphaleron, the multisphalerons and the sphaleron-antisphaleron pair at finite mixing angle, the ansatz further allows the construction of the sphaleron and multisphaleron barriers and of the bisphalerons at finite mixing angle. We conjecture that further solutions exist.Comment: 17 pages, latex, THU-94/0

    Body Fixed Frame, Rigid Gauge Rotations and Large N Random Fields in QCD

    Get PDF
    The "body fixed frame" with respect to local gauge transformations is introduced. Rigid gauge "rotations" in QCD and their \Sch equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a nonvanishing static colormagnetic field in the "body fixed" frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic--like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit.Comment: 29 pages LATEX, Weizmann Institute preprint WIS-93/40/Apr -P

    Wigner--Dyson statistics for a class of integrable models

    Full text link
    We construct an ensemble of second--quantized Hamiltonians with two bosonic degrees of freedom, whose members display with probability one GOE or GUE statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely the boson number, and thus are integrable. To construct this ensemble we use some ``reverse engineering'' starting from the fact that nn--bosons in a two--level system with random interactions have an integrable classical limit by the old Heisenberg association of boson operators to actions and angles. By choosing an nn--body random interaction and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the example.Comment: 3 pages, 1 figur

    Some New/Old Approaches to QCD

    Full text link
    This is a talk delivered at the Meeting on Integrable Quantum Field Theories, Villa Olmo and at STRINGS 1992, Rome, September 1992. I discuss some recent attempts to revive two old ideas regarding an analytic approach to QCD-the development of a string representation of the theory and the large N limit of QCD.Comment: 20 page
    • …
    corecore