We construct an ensemble of second--quantized Hamiltonians with two bosonic
degrees of freedom, whose members display with probability one GOE or GUE
statistics. Nevertheless, these Hamiltonians have a second integral of motion,
namely the boson number, and thus are integrable. To construct this ensemble we
use some ``reverse engineering'' starting from the fact that n--bosons in a
two--level system with random interactions have an integrable classical limit
by the old Heisenberg association of boson operators to actions and angles. By
choosing an n--body random interaction and degenerate levels we end up with
GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the example.Comment: 3 pages, 1 figur