204 research outputs found

    The expression patterns and correlations of claudin-6, methy-CpG binding protein 2, DNA methyltransferase 1, histone deacetylase 1, acetyl-histone H3 and acetyl-histone H4 and their clinicopathological significance in breast invasive ductal carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Claudin-6 is a candidate tumor suppressor gene in breast cancer, and has been shown to be regulated by DNA methylation and histone modification in breast cancer lines. However, the expression of claudin-6 in breast invasive ductal carcinomas and correlation with clinical behavior or expression of other markers is unclear. We considered that the expression pattern of claudin-6 might be related to the expression of DNA methylation associated proteins (methyl-CpG binding protein 2 (MeCP2) and DNA methyltransferase 1 (DNMT1)) and histone modification associated proteins (histone deacetylase 1 (HDAC1), acetyl-histone H3 (H3Ac) and acetyl- histone H4 (H4Ac)).</p> <p>Methods</p> <p>We have investigated the expression of claudin-6, MeCP2, HDAC1, H3Ac and H4Ac in 100 breast invasive ductal carcinoma tissues and 22 mammary gland fibroadenoma tissues using immunohistochemistry.</p> <p>Results</p> <p>Claudin-6 protein expression was reduced in breast invasive ductal carcinomas (<it>P </it>< 0.001). In contrast, expression of MeCP2 (<it>P </it>< 0.001), DNMT1 (<it>P </it>= 0.001), HDAC1 (<it>P </it>< 0.001) and H3Ac (<it>P </it>= 0.004) expressions was increased. Claudin-6 expression was inversely correlated with lymph node metastasis (<it>P </it>= 0.021). Increased expression of HDAC1 was correlated with histological grade (<it>P </it>< 0.001), age (<it>P </it>= 0.004), clinical stage (<it>P </it>= 0.007) and lymph node metastasis (<it>P </it>= 0.001). H3Ac expression was associated with tumor size (<it>P </it>= 0.044) and clinical stage of cancers (<it>P </it>= 0.034). MeCP2, DNMT1 and H4Ac expression levels did not correlate with any of the tested clinicopathological parameters (<it>P </it>> 0.05). We identified a positive correlation between MeCP2 protein expression and H3Ac and H4Ac protein expression.</p> <p>Conclusions</p> <p>Our results show that claudin-6 protein is significantly down-regulated in breast invasive ductal carcinomas and is an important correlate with lymphatic metastasis, but claudin-6 down-regulation was not correlated with upregulation of the methylation associated proteins (MeCP2, DNMT1) or histone modification associated proteins (HDAC1, H3Ac, H4Ac). Interestingly, the expression of MeCP2 was positively correlated with the expression of H3Ac and H3Ac protein expression was positively correlated with the expression of H4Ac in breast invasive ductal carcinoma</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/4549669866581452</url></p

    Molecular Characterization and Tissue Localization of an F-Box Only Protein from Silkworm, Bombyx mori

    Get PDF
    The eukaryotic F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. We identified a gene encoding an F-box protein from a cDNA library of silkworm pupae, which has an ORF of 1821 bp, encoding a predicted 606 amino acids. Bioinformatic analysis on the amino acid sequence shows that BmFBXO21 has a low degree of similarity to proteins from other species, and may be related to the regulation of cell-cycle progression. We have detected the expression pattern of BmFBXO21 mRNA and protein and performed immunohistochemistry at three different levels. Expression was highest in the spinning stage, and in the tissues of head, epidermis, and genital organs

    Translocase of the Outer Mitochondrial Membrane 40 Is Required for Mitochondrial Biogenesis and Embryo Development in Arabidopsis

    Get PDF
    In eukaryotes, mitochondrion is an essential organelle which is surrounded by a double membrane system, including the outer membrane, intermembrane space and the inner membrane. The translocase of the outer mitochondrial membrane (TOM) complex has attracted enormous interest for its role in importing the preprotein from the cytoplasm into the mitochondrion. However, little is understood about the potential biological function of the TOM complex in Arabidopsis. The aim of the present study was to investigate how AtTOM40, a gene encoding the core subunit of the TOM complex, works in Arabidopsis. As a result, we found that lack of AtTOM40 disturbed embryo development and its pattern formation after the globular embryo stage, and finally caused albino ovules and seed abortion at the ratio of a quarter in the homozygous tom40 plants. Further investigation demonstrated that AtTOM40 is wildly expressed in different tissues, especially in cotyledons primordium during Arabidopsis embryogenesis. Moreover, we confirmed that the encoded protein AtTOM40 is localized in mitochondrion, and the observation of the ultrastructure revealed that mitochondrion biogenesis was impaired in tom40-1 embryo cells. Quantitative real-time PCR was utilized to determine the expression of genes encoding outer mitochondrial membrane proteins in the homozygous tom40-1 mutant embryos, including the genes known to be involved in import, assembly and transport of mitochondrial proteins, and the results demonstrated that most of the gene expressions were abnormal. Similarly, the expression of genes relevant to embryo development and pattern formation, such as SAM (shoot apical meristem), cotyledon, vascular primordium and hypophysis, was also affected in homozygous tom40-1 mutant embryos. Taken together, we draw the conclusion that the AtTOM40 gene is essential for the normal structure of the mitochondrion, and participates in early embryo development and pattern formation through maintaining the biogenesis of mitochondria. The findings of this study may provide new insight into the biological function of the TOM40 subunit in higher plants

    Grassland health assessment based on indicators monitored by UAVs: a case study at a household scale

    Get PDF
    Grassland health assessment (GHA) is a bridge of study and management of grassland ecosystem. However, there is no standardized quantitative indicators and long-term monitor methods for GHA at a large scale, which may hinder theoretical study and practical application of GHA. In this study, along with previous concept and practices (i.e., CVOR, the integrated indexes of condition, vigor, organization and resilience), we proposed an assessment system based on the indicators monitored by unmanned aerial vehicles (UAVs)-UAVCVOR, and tested the feasibility of UAVCVOR at typical household pastures on the Qinghai-Tibetan Plateau, China. Our findings show that: (1) the key indicators of GHA could be measured directly or represented by the relative counterpart indicators that monitored by UAVs, (2) there was a significantly linear relationship between CVOR estimated by field- and UAV-based data, and (3) the CVOR decreased along with the increasing grazing intensity nonlinearly, and there are similar tendencies of CVOR that estimated by the two methods. These findings suggest that UAVs is suitable for GHA efficiently and correctly, which will be useful for the protection and sustainable management of grasslands

    Associations of Pulmonary Fibrosis with Peripheral Blood Th1/Th2 Cell Imbalance and EBF3 Gene Methylation in Uygur Pigeon Breeder’s Lung Patients

    Get PDF
    Background/Aims Pigeon breeder’s lung (PBL) results from Th1/Th2 cell imbalance. B cells inhibit the immune activity of Th1, and EBF3 is a key B cell factor. This study explored the relationship between EBF3 and Th1/Th2 imbalance in chronic PBL cases complicated with pulmonary fibrosis (PF). Methods Twenty Uygur PBL+PF patients, 20 pigeon breeders without PBL or PF, and 20 healthy individuals without pigeon breeding history constituted the patient I, negative control, and normal control groups, respectively. Peripheral blood specimens and case backgrounds were collected between June 2016 and March 2017. EBF3 gene methylation was analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry. To compare different mechanisms of PF progression in PBL, samples from 20 Uygur PBL patients without PF (at acute and sub-acute stages) were collected between October 2017 and February 2018, constituting the patient II group. EBF3 mRNA expression was evaluated by real-time polymerase chain reaction. IFN-γ, IL-4 and IL-10 expression and Th1/Th2 imbalance in PBL were evaluated by enzyme-linked immunosorbent assay and flow cytometry. Results CpG-2 and general methylation rates in the patient I group were lower than those in the control groups (P˂0.017). The level of EBF3 mRNA expression in the patient I group was significantly higher than that in any other group. Compared with the control groups, the patient I group showed a significantly higher level of IL-4, whereas the patient II group showed a significantly lower level. IL-10 was also expressed more highly in the patient I group than in any other group (P&#x3c; 0.01). Flow cytometry showed INF-γ dominance (Th1 cytokine) in PBL at the acute/sub-acute stage and IL-4 dominance (Th2 cytokine) at the chronic stage after PF occurred. The general methylation rate was negatively correlated with the mRNA level, with the latter being positively correlated with the IL-10 level and number of pigeons bred in the past 3 months. IL-4 expression was negatively correlated with INF-γ but positively correlated with PF area and duration of pigeon breeding history. Conclusions After PF occurs in chronic PBL, the inflammation type changes from Th1 dominance to Th2 dominance. During PBL development, IL-10 increases before IL-4 does, which may be associated with EBF3 hypomethylation and the involvement of B lymphocytes

    Analysis of complete mitogenomes and phylogenetic relationships of Frontopsylla spadix and Neopsylla specialis

    Get PDF
    Fleas represent a group of paramount medical significance, subsisting on blood and acting as vectors for an array of naturally occurring diseases. These pathogens constitute essential elements within the plague biome, exerting deleterious effects on both human and livestock health. In this study, we successfully assembled and sequenced the whole mitochondrial genome of Frontopsylla spadix and Neopsylla specialis using long-range PCR and next-generation sequencing technologies. The mitogenomes of F. spadix and N. specialis both have 37 genes with full lengths of 15,085 bp and 16,820 bp, respectively. The topology of the phylogenetic tree elucidates that species F. spadix is clustered in a branch alongside other members of the family Leptopsyllidae, whereas species N. specialis is a sister taxon to Dorcadia ioffi and Hystrichopsylla weida qinlingensis. It also suggests that Pulicidae form a monophyletic clade, Ctenopthalmidae, Hystrichopsyllidae, Vermipsyllidae form a sister group to Ceratophyllidae/Leptopsyllidae group. The mitochondrial genomes of F. spadix and N. specialis were sequenced for the first time, which will contribute to a more comprehensive phylogenetic analysis of the Siphonaptera order. The foundation for subsequent systematic studies, and molecular biology of fleas was established

    The mechanisms of Yu Ping Feng San in tracking the cisplatin-resistance by regulating ATP-binding cassette transporter and glutathione S-transferase in lung cancer cells

    Get PDF
    Cisplatin is one of the first line anti-cancer drugs prescribed for treatment of solid tumors; however, the chemotherapeutic drug resistance is still a major obstacle of cisplatin in treating cancers. Yu Ping Feng San (YPFS), a well-known ancient Chinese herbal combination formula consisting of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, is prescribed as a herbal decoction to treat immune disorders in clinic. To understand the fast-onset action of YPFS as an anti-cancer drug to fight against the drug resistance of cisplatin, we provided detailed analyses of intracellular cisplatin accumulation, cell viability, and expressions and activities of ATP-binding cassette transporters and glutathione S-transferases (GSTs) in YPFS-treated lung cancer cell lines. In cultured A549 or its cisplatin-resistance A549/DDP cells, application of YPFS increased accumulation of intracellular cisplatin, resulting in lower cell viability. In parallel, the activities and expressions of ATP-binding cassette transporters and GSTs were down-regulated in the presence of YPFS. The expression of p65 subunit of NF-κB complex was reduced by treating the cultures with YPFS, leading to a high ratio of Bax/Bcl-2, i.e. increasing the rate of cell death. Prim-O-glucosylcimifugin, one of the abundant ingredients in YPFS, modulated the activity of GSTs, and then elevated cisplatin accumulation, resulting in increased cell apoptosis. The present result supports the notion of YPFS in reversing drug resistance of cisplatin in lung cancer cells by elevating of intracellular cisplatin, and the underlying mechanism may be down regulating the activities and expressions of ATP-binding cassette transporters and GSTs

    Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially in winter when the impact of secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particles (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds were derived from biomass burning; they contain O-poor and highly unsaturated compounds with aromatic rings, which are sensitive to photochemical reactions, and some of which probably contribute to light-absorbing chromophores. Under moderate to high SOA loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA-loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. But nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA-loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates and nitrooxy-organosulfates that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to the chemical diversity of organosulfates and nitrooxy-organosulfates under photo-oxidation. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy-organosulfates under low SOA-loading. The SOA-loading is an important factor associating with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.</p

    Deep-Learning-Enabled Fast Optical Identification and Characterization of Two-Dimensional Materials

    Full text link
    Advanced microscopy and/or spectroscopy tools play indispensable role in nanoscience and nanotechnology research, as it provides rich information about the growth mechanism, chemical compositions, crystallography, and other important physical and chemical properties. However, the interpretation of imaging data heavily relies on the "intuition" of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, we use the optical characterization of two-dimensional (2D) materials as a case study, and demonstrate a neural-network-based algorithm for the material and thickness identification of exfoliated 2D materials with high prediction accuracy and real-time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, segment sizes and their distributions, based on which we develop an ensemble approach topredict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other applications such as identifying layer numbers of a new 2D material, or materials produced by a different synthetic approach. Our artificial-intelligence-based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials and potentially accelerate new material discoveries

    Identification of Susceptibility Pathways for the Role of Chromosome 15q25.1 in Modifying Lung Cancer Risk

    Get PDF
    Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer
    corecore