11 research outputs found

    Puncture discharges in surface dielectrics as contaminant sources in spacecraft environments

    Get PDF
    Spacecraft in geosynchronous orbits are known to become charged to large negative potentials during the local midnight region of the satellite orbit. Such discharges have been studied by the electron beam irradiation of dielectric samples in a vacuum environment. In addition to static measurements and photographic examination of the puncture discharges in Teflon samples, the transient characteristics of the electrical discharges are determined from oscillographs of voltage and current and by charged particle measurements employing a biased Faraday cup and a retarding potential analyzer. Using these latter techniques, studies of angular and energy distributions of charged particles have indicated an initial burst of high energy electrons (5 x 10 to the 13th power per discharge at energies greater than 300 eV) followed by a less intense burst of lower energy negative particles. Positive ions are emitted from the discharge site in an initial high velocity burst followed by a lower velocity burst tentatively identified as carbon

    Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging

    Get PDF
    The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated
    corecore