23 research outputs found

    Polarization-sensitive transfer matrix modeling for displacement measuring interferometry

    Get PDF
    The use of polarizing optics for both beam steering and phase measurement applications in displacement measuring interferometer designs is almost universal. Interferometer designs that employ polarizing optics in this manner are particularly sensitive to the effects of unwanted optical cavities that form within the optics due to polarization leakage and back reflections from material interfaces. Modeling techniques commonly employed in the design of such interferometers are poorly suited to the analysis of multiple passes through polarizing optics. A technique, along with an accompanying software implementation, is presented here that is capable of modeling the propagation of monochromatic plane waves through an arbitrary network of linear planar optical components

    Multiple intensity reference interferometry for the correction of sub-fringe displacement non-linearities

    Get PDF
    Displacement measuring interferometers, commonly employed for traceable measurements at the nanoscale, suffer from non-linearities in the measured displacement that limit the achievable measurement uncertainty for microscopic displacements. Two closely related novel non-linearity correction methodologies are presented here that allow for the correction of non-linearities in cases where the displacement covers much less than a full optical fringe. Both corrections have been shown, under ideal conditions, to be capable of reducing all residual non-linearity harmonics to below the 10 pm level.Engineering and Physical Sciences Research Council (EPSRC) EP/R511894/1 (Project 2199198). Department for Business, Energy and Industrial Strategy; Royal Academy of Engineering Research Fellowship F\201718\174

    Correction of periodic displacement non-linearities by two-wavelength interferometry

    Get PDF
    Non-linearities in interferometric displacement measurements commonly affect both homodyne and heterodyne optical interferometers. Unwanted back reflections (ghost reflections) or polarisation leakage introduce non-linearity terms at harmonics of the illuminating wavelength that cannot be fully corrected for with standard non-linearity correction techniques. A two-wavelength interferometric approach, operating at 632.8 and 785 nm, is presented here that is capable of correcting such non-linearities. Non-linearities are separated from the difference between two displacement measurements made at differing wavelengths with a Fourier approach. Compared to a standard Heydemann ellipse fitting correction, the proposed approach reduces estimated residual non-linearities from 84 to 11 pm in the case of a linear displacement profile. In particular this approach is applicable to the correction of higher order non-linearities that are caused by multiple reflections, and that are therefore very sensitive to alignment conditions

    Co-Nanomet: Co-ordination of Nanometrology in Europe

    Get PDF
    Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Today’s global economy depends on reliable measurements and tests, which are trusted and accepted internationally. It must provide the ability to measure in three dimensions with atomic resolution over large areas. For industrial application this must also be achieved at a suitable speed/throughput. Measurements in the nanometre range should be traceable back to internationally accepted units of measurement (e.g. of length, angle, quantity of matter, and force). This requires common, validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. In some areas, even a common vocabulary needs to be defined. A traceability chain for the required measurements in the nm range has been established in only a few special cases. A common strategy for European nanometrology has been defined, as captured herein, such that future nanometrology development in Europe may build out from our many current strengths. In this way, European nanotechnology will be supported to reach its full and most exciting potential. As a strategic guidance, this document contains a vision for European nanometrology 2020; future goals and research needs, building out from an evaluation of the status of science and technology in 2010. It incorporates concepts for the acceleration of European nanometrology, in support of the effective commercial exploitation of emerging nanotechnologies. The field of nanotechnology covers a breadth of disciplines, each of which has specific and varying metrological needs. To this end, a set of four core technology fields or priority themes (Engineered Nanoparticles, Nanobiotechnology, Thin Films and Structured Surfaces and Modelling & Simulation) are the focus of this review. Each represents an area within which rapid scientific development during the last decade has seen corresponding growth in or towards commercial exploitation routes. This document was compiled under the European Commission Framework Programme 7 project, Co-Nanomet. It has drawn together input from industry, research institutes, (national) metrology institutes, regulatory and standardisation bodies across Europe. Through the common work of the partners and all those interested parties who have contributed, it represents a significant collaborative European effort in this important field. In the next decade, nanotechnology can be expected to approach maturity, as a major enabling technological discipline with widespread application. This document provides a guide to the many bodies across Europe in their activities or responsibilities in the field of nanotechnology and related measurement requirements. It will support the commercial exploitation of nanotechnology, as it transitions through this next exciting decade

    DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle

    Get PDF
    Physical mapping of DNA can be used to detect structural variants and for whole-genome haplotype assembly. Here, the authors use CRISPR-Cas9 and high-speed atomic force microscopy to ‘nanomap’ single molecules of DNA
    corecore