166 research outputs found

    Modeling and simulation of the two-tank system within a hybrid framework

    Get PDF
    Most real-world dynamical systems are often involving continuous behaviors and discrete events, in this case, they are called hybrid dynamical systems (HDSs). To properly model this kind of systems, it is necessary to consider both the continuous and the discrete aspects of its dynamics. In this paper, a modeling framework based on the hybrid automata (HA) approach is proposed. This hybrid modeling framework allows combining the multi-state models of the system, described by nonlinear differential equations, with the system’s discrete dynamics described by finite state machines. To attest to the efficiency of the proposed modeling framework, its application to a two-tank hybrid system (TTHS) is presented. The TTHS studied is a typical benchmark for HDSs with four operating modes. The MATLAB Simulink and Stateflow tools are used to implement and simulate the hybrid model of the TTHS. Different simulations results demonstrate the efficiency of the proposed modeling framework, which allows us to appropriately have a complete model of an HDS

    Análisis del efecto de geometrías novedosas de tobera en el proceso de combustión diésel

    Full text link
    The Project consists in the study of the effects of new diesel injector nozzle geometries over the combustion process, heat release, emissions and fuel consumption.El diseño de los motores diésel está fuertemente marcado por la necesidad de combinar un alto rendimiento térmico y el control de las emisiones contaminantes, particularmente óxidos de nitrógeno y partículas. En este sentido, el sistema de inyección es uno de los aspectos más importantes a optimizar, ya que afecta de forma significativa a los procesos de atomización y mezcla del combustible con el aire dentro del cilindro. En el presente proyecto se evaluará el impacto de la utilización de inyectores con distintas geometrías en los orificios de descarga sobre la combustión. Para ello se realizarán ensayos en un motor policilíndrico de última generación, observando los resultados en términos de consumo, emisiones y ley de liberación de calor.Yaakoubi, M. (2017). Análisis del efecto de geometrías novedosas de tobera en el proceso de combustión diésel. Universitat Politècnica de València. http://hdl.handle.net/10251/87938TFG

    Wind Energy Conversion System Modeling toward Different Approaches

    Get PDF
    The main focus of this chapter is to modeling the different parts of the wind energy conversion system (WECS) and reviewing the different approaches used in this context. The chapter starts with the aerodynamic and the structural modeling of the wind turbines (WTs), and a description of the steps used to derive a linear time invariant (LTI) model. Thereafter, the chapter introduces models of the electrical actuators in the three phases (abc) and park phases (dq) reference frames, and recalls the assumptions considered. The chapter finishes by presenting the pulse width modulation (PWM) control strategy, the power converters and the pitch actuator models

    Combiner intelligence artificielle et programmation mathématique pour la planification des horaires des équipages en transport aérien

    Get PDF
    RÉSUMÉ: La recherche opérationnelle est un élément central de l’amélioration des horaires d’équipage. L’objectif est d’appliquer des algorithmes de programmation mathématique pour trouver des solutions optimales. Toutefois, cette approche présente un inconvénient important : les temps d’exécution sont longs et nécessitent souvent plusieurs jours pour converger. Cela réduit la valeur pratique d’une solution optimale puisqu’il n’est pas possible d’effectuer une nouvelle exécution avec de nouveaux réglages de paramètres. Étant donné que les horaires des transporteurs aériens sont fréquemment perturbés par des événements météorologiques pendant toute l’année, il est souhaitable de chercher de nouveaux moyens de réduire les durées d’exécution. Dans le cadre de cette thèse, on s’intéresse au problème de rotations d’équipage aériens ou CPP (Crew Pairing Problem), une des étapes de la planification des horaires d’équipage. Pour chaque catégorie d’équipage et chaque type de flotte d’aéronefs, le CPP consiste à trouver un ensemble de rotations à coût minimal afin que chaque vol actif soit effectué par un équipage, en respectant certaines conditions supplémentaires qui varient selon les applications et qui découlent généralement des accords de travail de chaque compagnie. Ce problème devient difficile à résoudre lorsque le nombre de vols augmente car le nombre de rotations possibles augmente de façon exponentielle (nombre de variables). La méthode la plus répandue depuis les années 1990 a été de résoudre le problème de partitionnement d’ensemble avec génération de colonnes insérée dans un algorithme de séparation et évaluation ou B&B (branch-&-bound). Lorsque le nombre de vols augmente dans un problème de rotations d’équipage, le temps pour le résoudre par génération de colonnes devient important. Le nombre d’itérations de génération de colonnes, le temps par itération pour résoudre le problème maître et le nombre de noeuds de branchement augmentent. La méthode d’agrégation dynamique des contraintes (DCA) accélère le problème maître en réduisant le nombre de contraintes de partitionnement définies dans le problème maître restreint en agrégeant en une seule contrainte chaque groupe de tâches qui devraient être consécutives dans la solution optimale. Ceci correspond à fixer temporairement à 1 des variables de connexion de vol. Ceci permet de remplacer toutes les contraintes de couverture des vols d’une grappe par une contrainte unique. L’algorithme modifie dynamiquement ces grappes pour atteindre la solution optimale si certaines prédictions étaient fausses. L’objectif de cette thèse est donc d’utiliser différentes méthodes d’apprentissage machine pour proposer des grappes de vols ayant une forte probabilité d’être effectués consécutivement par le même équipage, dans une solution optimale. Cette information alimente l’optimiseur de program mation mathématique pour terminer le travail en tenant compte de la fonction de coût exacte et des contraintes complexes. Dans le premier sujet de cette thèse, nous présentons une étude de cas sur l’utilisation d’algorithmes d’apprentissage machine pour initialiser solveur commercial à base de génération de colonnes à grande échelle (GENCOL) dans le contexte d’un problème hebdomadaire de rotations d’équipage aérien, où de petites économies de 1.0 % se traduisent par une augmentation des revenus annuels de dizaines de millions de dollars dans une grande compagnie aérienne. Nous nous concentrons sur le problème de la prédiction du prochain vol de correspondance d’un équipage, défini comme un problème de classification multiclasse formé à partir de données historiques, et nous concevons une approche de réseaux de neurones adaptée qui atteint une grande précision (99.7% au total ou 82.5% sur les cas plus difficiles). Nous démontrons l’utilité de notre approche en utilisant une heuristique simple pour combiner les prédictions de connexion de vols afin de former des grappes initiales de vols qui sont fournis comme information initiale au solveur GENCOL, ce qui donne une amélioration de vitesse 10x et jusqu’à 0.2% d’économie. Dans le second sujet de cette thèse, nous proposons de combiner de multiples méthodes d’optimisation mises en oeuvre, développées et testées sur de petits ensembles de données, afin d’obtenir un nouveau solveur efficace pour le problème de rotations d’équipes à grande échelle. Nous utilisons l’apprentissage machine pour proposer des grappes initiales pour un problème de rotations d’équipage important : des problèmes mensuels comportant jusqu’à 50 000 vols. Nous utilisons l’apprentissage machine, pour produire des grappes de vols ayant une forte probabilité d’être effectués consécutivement par le même équipage, dans une solution optimale. Un nouvel algorithme combinant plusieurs techniques avancées de recherche opérationnelle sera utilisé pour assembler et modifier ces grappes, au besoin, afin de produire une bonne solution. Cette nouvelle approche, en commençant par l’apprentissage machine et en terminant l’optimisation par la programmation mathématique, permettra de résoudre des problèmes globalement plus importants et d’éviter la perte d’optimalité résultant de la décomposition heuristique en petites périodes de temps dans l’approche à horizon fuyant. Nous montrons que les grappes produites par l’heuristique à base d’apprentissage machine sont mieux adaptées aux problèmes de rotations d’équipage, ce qui se traduit par une réduction moyenne du coût de la solution entre 6.8 et 8.52 %, qui est principalement dû à la réduction du coût des contraintes globales entre 69.79 et 78.11 %, par rapport aux rotations obtenus avec une solution initiale standard. Dans l’algorithme de génération de colonnes, une solution initiale réalisable est requise pour assurer la faisabilité du problème primal à chaque itération de génération de colonnes. De plus, il est évident, d’après les résultats expérimentaux dans la littérature, que si la qualité de la solution initiale est meilleure, la convergence de génération de colonnes est également plus rapide. Ainsi, une solution initiale de haute qualité devrait être générée dans un laps de temps plus court. Pour pouvoir proposer une telle solution initiale, on a besoin d’un algorithme d’apprentissage machine capable d’incorporer les contraintes locales dans le processus d’entraînement. Dans le troisième sujet de cette thèse, nous présentons donc les réseaux à noyaux convolutifs structurés (SCKN) qui combinent les propriétés des architectures d’apprentissage profond, la flexibilité non paramétrique des méthodes du noyau et les prédicteurs structurés. Plus précisément, nous montrons que l’utilisation supervisée de cette combinaison surpasse les méthodes de pointe en termes de sous-optimalité primale et de précision du test sur l’ensemble de données OCR. Nous appliquons cette méthode à un ensemble de données de prévision de connexions de vols pour proposer de bonnes solutions initiales à un solveur de planification des horaires d’équipage aérien. Les principaux résultats des calculs montrent que l’utilisation de l’approche proposée aboutit à de meilleures solutions avec des coûts significativement plus faibles, réduisant de 9.51 % le coût de la solution et de 80.25 % le coût des contraintes globales. De plus, l’utilisation de la solution obtenue pour relancer le processus d’optimisation donne de meilleurs résultats, réduisant encore le coût de la solution et fournissant une solution avec un coût très négligeable des contraintes globales et un nombre beaucoup plus réduit de repositionnements.----------ABSTRACT: A focal point for improving crew scheduling is the study of operations research methods, in order to find optimal solutions. However, this approach has a major drawback. While optimal solutions are possible to achieve, the run times are lengthy, often requiring days for convergence. This reduces the practical value of an optimal solution because there is limited ability to complete a re-run with new parameter settings. Given that air carrier schedules experience frequent year-round disruption from weather events, it is desirable to look for new ways to reduce run times thus making schedule re-generation quicker and more interactive. For each crew category and aircraft fleet type, the crew pairing problem (CPP) consists of finding a set of minimum-cost rotations so that each active flight is performed by a crew, under certain additional conditions that vary according to the applications and that generally result from the work agreements of each airline. This problem becomes difficult to solve when the number of flights increases because the number of possible rotations increases exponentially (number of variables). The most prevalent method since the 1990s has been the set partitioning problem with column generation inserted in branch-&-bound. When the number of flights increases in a CPP, the time to solve it by column generation becomes important. Specifically, the number of iterations and the time per iteration to solve the master problem and the number of branching nodes increase. The dynamic constraint aggregation (DCA) method accelerates the master problem by reducing the number of partitioning constraints defined in the restricted master problem by aggregating into a single constraint each group of tasks that should be consecutive in the optimal solution. This corresponds to temporarily fixing to one the flight-connection variables. This allows all flightcovering constraints for flights in a cluster to be replaced by a single constraint. The algorithm modifies the clusters dynamically to reach an optimal solution if some predictions were wrong. The objective of this thesis is therefore to use various machine learning methods to propose clusters of flights with a high probability of being performed consecutively by the same crew, in an optimal solution. This information feeds into the mathematical programming optimizer to complete the work taking into account the exact cost function and complex CPP constraints. In the first subject of this thesis, we present a case study of using machine learning classification algorithms to initialize a large-scale commercial operations research solver (GENCOL) in the context of a weekly airline CPP, where small savings of as little as 1% translate to increasing annual revenue by dozens of millions of dollars in a large airline. We focus on the problem of predicting the next connecting flight of a crew, framed as a multiclass classification problem trained from historical data, and design an adapted neural network approach that achieves high accuracy (99.7%) overall or 82.5% on harder instances). We demonstrate the utility of our approach by using simple heuristics to combine the flight-connection predictions to form initial crew-pairing clusters that are provided as initial information to the GENCOL solver, yielding a 10x speed improvement and up to 0.2% cost saving. In the second subject of this thesis, we propose to combine multiple optimization methods implemented, developed and tested on small datasets, in order to obtain an efficient new solver for large-scale CPPs. We use Machine Learning (ML) to propose a good initial partition for a large CPP: monthly problems with up to 50 000 flights. We use ML to produce clusters of flights having a high probability of being performed consecutively by the same crew, in an optimal solution. A new algorithm combining several advanced Operations Research techniques will be used to assemble and modify these clusters, when necessary, to produce a good solution. This new approach, starting with Machine Learning and finishing the optimization with Mathematical Programming will permit to solve globally larger problems and will avoid the loss of optimality resulting of heuristic decomposition in small time slices in the rolling horizon approach. We show that the clusters produced by ML-based heuristics are better suited for CPPs, resulting in an average reduction of solution cost between 6.8% and 8.52%, which is mainly due to the reduction in the cost of global constraints between 69.79% and 78.11%, when compared to pairings obtained with a standard initial solution. In the column generation algorithm, an initial feasible solution is required to ensure the feasibility of the primal problem at each iteration of column generation. Moreover, it is clear from the computational experiments in the literature that if the quality of the initial solution is better, the convergence of column generation is also faster. Thus, a high quality initial solution should be generated in a shorter period of time. To be able to propose such an initial solution, we need a Machine Learning algorithm that is able to integrate local constraints into the training process. In the third subject of this thesis, we therefore introduce a Structured Convolutional Kernel Network, or SCKN, which combines the properties of deep learning architectures, the non-parametric flexibility of kernel methods and the structured predictors. More precisely, we show that using this combination in a supervised fashion outperforms state of the art methods in terms of the primal sub-optimality as well as on the test accuracy on the OCR dataset. We apply this method on a Next-Flight-Prediction dataset to propose good initial solutions to an airline crew scheduling solver. The main computational results show that using our proposed approach yields better results with significantly smaller costs, reducing by 9.51% the solution cost and by 80.25% the cost of global constraints. Furthermore, using the obtained solution to re-launch the optimization process yields better results, further reducing the solution cost and providing a solution with a very negligible cost of global constraints and a much smaller number of deadheads

    Electrocardiogram (ECG/EKG) QRS complex processing

    Get PDF
    La investigación de las primeras estrategias empleadas en el análisis de las señales procedentes del electrocardiograma es fundamental para iniciarse en el campo de procesamiento de señales ECG. Entre los algoritmos más comunes y más antiguos empleados actualmente en la detección de los complejos QRS, destaca el algoritmo de Pan-Tompkins. El presente trabajo comprende una explicación completa y detallada de cada una de las fases que compone el algoritmo de Pan-Tompkins, así como una metodología para evaluar e identificar mejoras en el código que simula su comportamiento. El proceso llevado a cabo en esta memoria ha sido: una primera lectura de diversas fuentes que describen el funcionamiento del algoritmo de Pan-Tompkins, a continuación se descompuso el algoritmo en diferentes partes facilitando así su comprensión y su construcción en MATLAB. Una vez completado el código MATLAB se realizó una evaluación de su funcionamiento utilizando señales ECG almacenadas y analizadas por PhysioNet. Los resultados reflejaron que el buen funcionamiento del algoritmo se limitaba a las señales con un ritmo sinusal regular, y es por ello que se realizó una segunda lectura de diversos artículos científicos que proporcionasen ideas para la modificación del algoritmo de PanTompkins. Tras seleccionar y poner en funcionamiento los cambios en este algoritmo se evaluó en señales ECG con arritmia. Los resultados obtenidos revelaron un incremento en la independencia de la eficacia de detección de complejos QRS frente a las características de la señal ECG comparando el funcionamiento del código MATLAB del algoritmo de Pan-Tompkins y el modificado

    An Estimate of a Frequency Characterizing the Electrochemical Stability of a Gold Electrode Modified by MHDA Thiol in Different Ways

    Get PDF
    A theoretical investigation aimed at estimating a characteristic frequency in the medium-low frequency domain in which the impedance response of a given interface measured by electrochemical impedance spectroscopy (EIS) is almost constant, constitutes the basic idea of this work. A theoretical model was subsequently applied to the data resulting from EIS measurements performed on gold electrodes modified by various ways of 16-mercaptohexadecanoic acid (MHDA) thiol functionalization. Analysis of these data revealed a direct relationship between the way the substrate was modified and this characteristic frequency. This work is licensed under a Creative Commons Attribution 4.0 International License

    Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation

    Get PDF
    The crew pairing problem (CPP) is generally modelled as a set partitioning problem where the flights have to be partitioned in pairings. A pairing is a sequence of flight legs separated by connection time and rest periods that starts and ends at the same base. Because of the extensive list of complex rules and regulations, determining whether a sequence of flights constitutes a feasible pairing can be quite difficult by itself, making CPP one of the hardest of the airline planning problems. In this paper, we first propose to improve the prototype Baseline solver of Desaulniers et al. (2020)2020) by adding dynamic control strategies to obtain an efficient solver for large-scale CPPs: Commercial-GENCOL-DCA. These solvers are designed to aggregate the flights covering constraints to reduce the size of the problem. Then, we use machine learning (ML) to produce clusters of flights having a high probability of being performed consecutively by the same crew. The solver combines several advanced Operations Research techniques to assemble and modify these clusters, when necessary, to produce a good solution. We show, on monthly CPPs with up to 50 000 flights, that Commercial-GENCOL-DCA with clusters produced by ML-based heuristics outperforms Baseline fed by initial clusters that are pairings of a solution obtained by rolling horizon with GENCOL. The reduction of solution cost averages between 6.8% and 8.52%, which is mainly due to the reduction in the cost of global constraints between 69.79% and 78.11%
    corecore