8 research outputs found

    The Voltage-Current Characteristic of high T_c DC SQUID: theory, simulation, experiment

    Full text link
    The analytical theory for the voltage-current characteristics of the large inductance (L>100 pH) high-T_c DC SQUIDs that has been developed previously is consistently compared with the computer simulations and the experiment. The theoretical voltage modulation for symmetric junctions is shown to be in a good agreement with the results of known computer simulations. It is shown that the asymmetry of the junctions results in the increase of the voltage modulation if the critical current is in excess of some threshold value (about 8 microAmps). Below this value the asymmetry leads to the reduction of the voltage modulation as compared to the symmetric case. The comparison with the experiment shows that the asymmetry can explain a large portion of experimental values of the voltage modulation which lie above the theoretical curve for symmetric DC SQUID. It also explains experimental points which lie below the curve at small critical currents. However, a significant portion of these values which lie below the curve cannot be explained by the junction asymmetry.Comment: 22 pages, 14 figure

    Signal amplification in a qubit-resonator system

    No full text
    We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit’s energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal

    Quantum behavior of a flux qubit coupled to a resonator

    No full text
    The detailed theory for the system of a superconducting qubit coupled to the transmission line resonator is presented. We describe the system by solving analytically and numerically the master equation for the density matrix, which includes dissipative Lindblad term. We calculate the transmission coefficient, which provides the way to probe the dressed states of the qubit. The theoretical results are related to the experiment with the intermediate coupling between the qubit and the resonator, when the coupling energy is of the same order as the qubit relaxation rate

    Voltage-current and voltage-flux characteristics of asymmetric high TC DC SQUIDs

    Full text link
    We report measurements of transfer functions and flux shifts of 20 on-chip high TC_C DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high TC_C thin film technology and they were single layer ones, having 140 nm thickness of YBa2_2Cu3_3O7x_{7-x} film deposited by laser ablation onto MgO bicrystal substrates with 240^0 misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i. e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs' voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance (L>120L>120 pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance (L6575L\simeq 65-75 pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high TC_C SQUID arrays and gratings.Comment: 11 pages, 4 tables, 17 figures This version is substantially modified. The Introduction and Section 2 are completely rewritten, while experimental part is mainly the same as in previous versio

    Low-frequency measurement of the tunneling amplitude in a flux qubit

    Full text link
    We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, which changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.Comment: REVTeX4, 3pp., 3 EPS figures. v2: new sample, textual clarifications. v3: minor polishing; final, to appear in PRB Rapid

    Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations

    Full text link
    Dissipative dynamics of a quantum bit driven by a strong resonant field and interacting with a heat bath is investigated. We derive generalized Bloch equations and find modifications of the qubit's damping rates caused by Rabi oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled to a LC-circuit is considered as an illustration of the general results. It is argued that recent experimental results give a clear evidence of effective suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte
    corecore