300 research outputs found

    The influence of PC6 on cardiovascular disorders: a review of central neural mechanisms

    Get PDF
    PC6 is a classic acupuncture point in traditional Chinese medicine. It is considered to be effective when treating cardiovascular disorders. In the present review the authors have focused on the neurophysiological bases of the effects of PC6 stimulation on cardiovascular mechanisms. Experimental studies have shown that the hypothalamic rostral ventrolateral medulla, arcuate nucleus and ventrolateral periaqueductal gray are involved in acupuncture attenuation of sympathoexcitatory cardiovascular reflex responses. This long-loop pathway also appears to contribute to the long-lasting, acupuncture-mediated attenuation of sympathetic premotor outflow and excitatory cardiovascular reflex responses. Acupuncture of PC6 modulates the activity in the cardiovascular system, an effect that may be attributed to attenuation of sympathoexcitatory cardiovascular reflex responses

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an β€˜electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effectβ€”electron spiral motion and magnon-drag thermopowerβ€”as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    Binding of Tetracycline and Chlortetracycline to the Enzyme Trypsin: Spectroscopic and Molecular Modeling Investigations

    Get PDF
    Tetracycline (TC) and chlortetracycline (CTC) are common members of the widely used veterinary drug tetracyclines, the residue of which in the environment can enter human body, being potentially harmful. In this study, we establish a new strategy to probe the binding modes of TC and CTC with trypsin based on spectroscopic and computational modeling methods. Both TC and CTC can interact with trypsin with one binding site to form trypsin-TC (CTC) complex, mainly through van der Waals' interactions and hydrogen bonds with the affinity order: TC>CTC. The bound TC (CTC) can result in inhibition of trypsin activity with the inhibition order: CTC>TC. The secondary structure and the microenvironment of the tryptophan residues of trypsin were also changed. However, the effect of CTC on the secondary structure content of trypsin was contrary to that of TC. Both the molecular docking study and the trypsin activity experiment revealed that TC bound into S1 binding pocket, competitively inhibiting the enzyme activity, and CTC was a non-competitive inhibitor which bound to a non-active site of trypsin, different from TC due to the Cl atom on the benzene ring of CTC which hinders CTC entering into the S1 binding pocket. CTC does not hinder the binding of the enzyme substrate, but the CTC-trypsin-substrate ternary complex can not further decompose into the product. The work provides basic data for clarifying the binding mechanisms of TC (CTC) with trypsin and can help to comprehensively understanding of the enzyme toxicity of different members of tetracyclines in vivo

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombospondin1 (THBS1), cystene-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF) are all involved in the transforming growth factor-beta (TGF-Ξ²) signal pathway, which plays an important role in the tumorigenesis. The purpose of this study is to explore the expression and prognostic significance of these proteins in esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>We used immunohistochemistry and western blotting to examine the expression status of THBS1, Cyr61 and CTGF in ESCC. Correlations of THBS1, Cyr61 and CTGF over-expressions with various clinicopathologic factors were also determined by using the Chi-square test or Fisher's exact probability test. Survival analysis was assessed by the Kaplan-Meier analysis and the log-rank test. Relative risk was evaluated by the multivariate Cox proportional hazards model.</p> <p>Results</p> <p>THBS1, Cyr61 and CTGF were all over-expressed in ESCC. THBS1 over-expression was significantly associated with TNM stage (<it>P </it>= 0.029) and regional lymph node involvement (<it>P </it>= 0.026). Kaplan-Meier survival analysis showed that over-expression of THBS1, Cyr61 or CTGF was related to poor survival of ESCC patients (<it>P </it>= 0.042, <it>P </it>= 0.020, <it>P </it>= 0.018, respectively). Multivariate Cox analysis demonstrated that Cyr61 and CTGF were independent factors in prognosis of ESCC.</p> <p>Conclusion</p> <p>Cyr61, CTGF and THBS1 were all over-expressed in ESCC and might be new molecular markers to predict the prognosis of ESCC patients.</p

    Cyr61/CCN1 Is Regulated by Wnt/Ξ²-Catenin Signaling and Plays an Important Role in the Progression of Hepatocellular Carcinoma

    Get PDF
    Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear Ξ²-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and Ξ²-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of Ξ²-catenin in human HCC samples. Activation of Ξ²-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of Ξ²-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that Ξ²-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of Ξ²-catenin signaling in HCC and may play an important role in the progression of HCC

    Suppression of Estrogen Receptor Transcriptional Activity by Connective Tissue Growth Factor

    Get PDF
    Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER) that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF) physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs
    • …
    corecore