8 research outputs found
Rol de la mitocondria y el estrés oxidativo en el bloqueo del desarrollo de embriones bovinos producidos in vitro
One of the biggest obstacles in the in vitro embryo production for basic research, commercial purposes, or conservation, is the blockade of the early cleavage, which occurs on a species-specific manner in a particular stage of development. To explain this phenomenon some causative factors have been postulated such as: disturbances in chromatin, cytoskeleton rearrangement, oxidative stress and mitochondrial damage. The latter has received considerable attention because mitochondrion is a source of reactive oxygen species (ROS), and oxidative stress is a critical mediator of physiological and pathological states. Over the past years it has been shown that hydrogen peroxide (H2O2) is a pivoting molecule able to trigger cell death by different mechanisms that may or may not involve the transcription factors such as NFκB-p53, and is executed by effector caspases. It is believed that mitochondria may play an important role as a producer or as a target of H2O2, and as a mediator in apoptotic death of embryos. The purpose of this review is to present the state of the art about apoptosis triggered by oxidative stress and mediated by mitochondria in in vitro produced bovine embryos, as part of the explanation for the low efficiency in this process.
Uno de los mayores obstáculos en la producción de embriones in vitro con fines de investigación básica, comerciales, o de conservación, es el detenimiento temprano del clivaje que ocurre de forma específica en una etapa del desarrollo. Para explicar este fenómeno se han postulado diferentes factores causales como: desórdenes en la cromatina, rearreglos del citoesqueleto, estrés oxidativo y daños mitocondriales. Esta última propuesta ha recibido gran atención, debido a que la mitocondria es fuente de especies reactivas de oxígeno (EROs) y el estrés oxidativo es un mediador crítico de procesos fisiológicos y estados patológicos. Durante los últimos años se ha demostrado que el peróxido de hidrógeno (H2O2) es una molécula pivotante capaz de desencadenar muerte celular por diferentes mecanismos que pueden involucrar o no a los factores de transcripción: NFκB - p53, y es ejecutado por caspasas efectoras. Se cree que la mitocondria podría estar jugando un papel importante como productora o como blanco del H2O2, y como mediadora en la muerte por apoptosis de los embriones. El objetivo de esta revisión es mostrar el estado del arte en cuanto a la apoptosis desencadenada por estrés oxidativo y mediada por la mitocondria en los embriones bovinos producidos in vitro, como parte de la explicación del bloqueo del clivaje y la baja eficiencia que aún se tiene en este proceso.
 
Effect of Flaxseed on some hormonal profile and genomic DNA concentration in Karadi lambs
Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep
Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep
Abstract Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep
FATS regulates polyamine biosynthesis by promoting ODC degradation in an ERβ-dependent manner in non-small-cell lung cancer
A Non-Targeted LC-MS Profiling Reveals Elevated Levels of Carnitine Precursors and Trimethylated Compounds in the Cord Plasma of Pre-Eclamptic Infants
Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish
Amino acids in reproductive nutrition and health
Amino acids are not only the building blocks of proteins, an indispensable component of cells, but also play versatile roles in regulating cell metabolism, proliferation, differentiation and growth by themselves or through their derivatives. At the whole body level, the bioavailability and metabolism of amino acids, interacting with other macronutrients, is critical for the physiological processes of reproduction including gametogenesis, fertilization, implantation, placentation, fetal growth and development. In fertilization and early pregnancy, histotroph in oviductal and uterine secretions provides nutrients and microenvironment for conceptus (embryo and extraembryonic membranes) development. These nutrients include select amino acids in histotroph (arginine, leucine and glutamine of particular interest) that stimulate conceptus growth and development, as well as interactions between maternal uterus and the conceptus, thus impacting maintenance of pregnancy, placental growth, development and functions, fetal growth and development, and consequential pregnancy outcomes. Gestational protein undernutrition causes fetal growth restriction and predisposes cardiovascular, metabolic diseases and others in offspring via multiple mechanisms, whereas the supplementation of glycine, leucine and taurine during pregnancy partially rescues growth restriction and beneficially modulates fetal programming. Thus, amino acids are essential for the fertility of humans and all animals
