1,581 research outputs found

    Qualitative characterization of healthcare wastes

    Get PDF
    The biological hazard inherent in the clinical wastes should be considered during the management and treatment process as well as the disposal into the environment. In this chapter, the risks associated with the clinical wastes as well as the management of these wastes are discussed. The chapter focused on reviewing the types of healthcare wastes generated from hospitals and clinics as well as the regulations and management practices used for these wastes. Moreover, the health risk associated with the infectious agents which have the potential to be transmitted into the environment. It has appeared that the clinical wastes represent real hazards for the human health and the environment if they were not managed properly

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Accretion Processes for General Spherically Symmetric Compact Objects

    Get PDF
    We investigate the accretion process for different spherically symmetric space-time geometries for a static fluid. We analyse this procedure using the most general black hole metric ansatz. After that, we examine the accretion process for specific spherically symmetric metrics obtaining the velocity of the sound during the process and the critical speed of the flow of the fluid around the black hole. In addition, we study the behaviour of the rate of change of the mass for each chosen metric for a barotropic fluid.Comment: 10 pages, 15 figures, v2 accepted for publication in 'European Physical Journal C

    Cost-effectiveness comparison between palpation- and ultrasound-guided thyroid fine-needle aspiration biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to perform a cost-effectiveness comparison between palpation-guided thyroid fine-needle aspiration biopsies (P-FNA) and ultrasound-guided thyroid FNA biopsies (USG-FNA).</p> <p>Methods</p> <p>Each nodule was considered as a case. Diagnostic steps were history and physical examination, TSH measurement, Tc<sup>99m </sup>thyroid scintigraphy for nodules with a low TSH level, initial P-FNA versus initial USG-FNA, repeat USG-FNA for nodules with initial inadequate P-FNA or USG-FNA, hemithyroidectomy for inadequate repeat USG-FNA. American Thyroid Association thyroid nodule management guidelines were simulated in estimating the cost of P-FNA strategy. American Association of Clinical Endocrinologists guidelines were simulated for USG-FNA strategy. Total costs were estimated by adding the cost of each diagnostic step to reach a diagnosis for 100 nodules. Strategy cost was found by dividing the total cost to 100. Incremental cost-effectiveness ratio (ICER) was calculated by dividing the difference between strategy cost of USG-FNA and P-FNA to the difference between accuracy of USG-FNA and P-FNA. A positive ICER indicates more and a negative ICER indicates less expense to achieve one more additional accurate diagnosis of thyroid cancer for USG-FNA.</p> <p>Results</p> <p>Seventy-eight P-FNAs and 190 USG-FNAs were performed between April 2003 and May 2008. There were no differences in age, gender, thyroid function, frequency of multinodular goiter, nodule location and diameter (median nodule diameter: 18.4 mm in P-FNA and 17.0 mm in USG-FNA) between groups. Cytology results in P-FNA versus USG-FNA groups were as follows: benign 49% versus 62% (p = 0.04), inadequate 42% versus 29% (p = 0.03), malignant 3% (p = 1.00) and indeterminate 6% (p = 0.78) for both. Eleven nodules from P-FNA and 18 from USG-FNA group underwent surgery. The accuracy of P-FNA was 0.64 and USG-FNA 0.72. Unit cost of P-FNA was 148 Euros and USG-FNA 226 Euros. The cost of P-FNA strategy was 534 Euros and USG-FNA strategy 523 Euros. Strategy cost includes the expense of repeat USG-FNA for initial inadequate FNAs and surgery for repeat inadequate USG-FNAs. ICER was -138 Euros.</p> <p>Conclusion</p> <p>Universal application of USG-FNA for all thyroid nodules is cost-effective and saves 138 Euros per additional accurate diagnosis of benign versus malignant thyroid nodular disease.</p> <p>Trial registration</p> <p>ClinicalTrials.gov, NCT00571090</p

    Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors

    Get PDF
    Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    A System Dynamics Approach for Hospital Waste Management in a City in a Developing Country: The Case of Nablus, Palestine

    Get PDF
    Hospitals and health centers provide a variety of healthcare services and normally generate hazardous waste as well as general waste. General waste has a similar nature to that of municipal solid waste and therefore could be disposed of in municipal landfills. However, hazardous waste poses risks to public health, unless it is properly managed. The hospital waste management system encompasses many factors, i.e., number of beds, number of employees, level of service, population, birth rate, fertility rate, and not in my back yard (NIMBY) syndrome. Therefore, this management system requires a comprehensive analysis to determine the role of each factor and its influence on the whole system. In this research, a hospital waste management simulation model is presented based on the system dynamics technique to determine the interaction among these factors in the system using a software package, ithink. This model is used to estimate waste segregation as this is important in the hospital waste management system to minimize risk to public health. Real data has been obtained from a case study of the city of Nablus, Palestine to validate the model. The model exhibits wastes generated from three types of hospitals (private, charitable, and government) by considering the number of both inpatients and outpatients depending on the population of the city under study. The model also offers the facility to compare the total waste generated among these different types of hospitals and anticipate and predict the future generated waste both infectious and non-infectious and the treatment cost incurred

    Med5(Nut1) and Med17(Srb4) Are Direct Targets of Mediator Histone H4 Tail Interactions

    Get PDF
    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone tail peptides substituted with an amino acid analog that is a UV activatible crosslinker, we have identified specific subunits within Mediator that participate in histone tail interactions. Using Mediator purified from mutant yeast strains we have evaluated the impact of these subunits on histone tail binding. This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct
    corecore