934 research outputs found

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Get PDF
    Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton) as starting materials. All samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions

    Get PDF
    The phase diagram of quark gluon plasma (QGP) formed at a very early stage just after the heavy ion collision is obtained by using a holographic dual model for the heavy ion collision. In this dual model colliding ions are described by the charged shock gravitational waves. Points on the phase diagram correspond to the QGP or hadronic matter with given temperatures and chemical potentials. The phase of QGP in dual terms is related to the case when the collision of shock waves leads to formation of trapped surface. Hadronic matter and other confined states correspond to the absence of trapped surface after collision. Multiplicity of the ion collision process is estimated in the dual language as area of the trapped surface. We show that a non-zero chemical potential reduces the multiplicity. To plot the phase diagram we use two different dual models of colliding ions, the point and the wall shock waves, and find qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte

    An Introspective Comparison of Random Forest-Based Classifiers for the Analysis of Cluster-Correlated Data by Way of RF++

    Get PDF
    Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public license

    Transverse electric field–induced deformation of armchair single-walled carbon nanotube

    Get PDF
    The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation

    On holographic thermalization and gravitational collapse of massless scalar fields

    Full text link
    In this paper we study thermalization in a strongly coupled system via AdS/CFT. Initially, the energy is injected into the system by turning on a spatially homogenous scalar source coupled to a marginal composite operator. The thermalization process is studied by numerically solving Einstein's equations coupled to a massless scalar field in the Poincare patch of AdS_5. We define a thermalization time t_T on the AdS side, which has an interpretation in terms of a spacelike Wilson loop in CFT. Here T is the thermal equilibrium temperature. We study both cases with the source turned on in short(Delta t = 1/T) durations. In the former case, the thermalization time t_T = g_t/T <= 1/T and the coefficient g_t = 0.73 in the limit Delta t <= 0.02/T. In the latter case, we find double- and multiple-collapse solutions, which may be interpreted as the gravity duals of two- or multi-stage thermalization in CFT. In all the cases our results indicate that such a strongly coupled system thermalizes in a typical time scale t_T=O(1)/T.Comment: 25 papers, 13 figures, Minor modifications, details of numerics added, references added, final version to appear in JHE
    corecore