69 research outputs found

    Search for Axionlike Particles Produced in e⁺ e⁻ Collisions at Belle II

    Get PDF
    International audienceWe present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2

    Combined analysis of Belle and Belle II data to determine the CKM angle ϕ3 using B+ → D(K0S h+h−)h+ decays

    Get PDF

    Erratum to: Combined analysis of Belle and Belle II data to determine the CKM angle ϕ3 using B+ → D(K0Sh+h−)h+ decays

    Get PDF

    Search for Axionlike Particles Produced in e+e- Collisions at Belle II

    Get PDF
    We present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2<9.7 GeV/c2 using data corresponding to an integrated luminosity of (445±3) pb-1. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength gaγγ of ALPs to photons at the level of 10-3 GeV-1. The limits are the most restrictive to date for 0.2<1 GeV/c2

    Search for an Invisibly Decaying Z\u27 Boson at Belle II in e⁺e⁻ → μ⁺μ⁻(e±^{\pm}μ^{\mp}) Plus Missing Energy Final States

    Get PDF

    Precise Measurement of the D0^{0} and D+^{+} Lifetimes at Belle II

    Get PDF
    We report a measurement of the D0^{0} and D+^{+} lifetimes using D0^{0}→K^{-}π+^{+} and D+^{+}→K^{-}π+^{+}π+^{+} decays reconstructed in e+^{+}e^{-}cc\overline{cc} data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e+^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the Υ(4S) resonance, correspond to an integrated luminosity of 72 fb1^{-1}. The results, τ(D0^{0})=410.5±1.1(stat)±0.8(syst)  fs and τ(D+^{+})=1030.4±4.7(stat)±3.1(syst) fs, are the most precise to date and are consistent with previous determinations

    Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

    Get PDF
    From April to July 2018, a data sample at the peak energy of the γ(4S) resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (496.3 ± 0.3 ± 3.0) pb-1, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II

    Erratum: The Belle II Physics Book (Progress of Theoretical and Experimental Physics (2019) 2019 (123C01) DOI: 10.1093/ptep/ptz106)

    Get PDF

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements
    corecore