4,444 research outputs found

    Weak Magnetic Order in the Bilayered-hydrate Nax_{x}CoO2y_{2}\cdot yH2_{2}O Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting Nax_xCoO2_{2} \cdot yyH2_2O

    Full text link
    A weak magnetic order was found in a non-superconducting bilayered-hydrate Nax_{x}CoO2y_{2}\cdot yH2_{2}O sample by a Co Nuclear Quadrupole Resonance (NQR) measurement. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T1/T_1T shows a prominent peak at 5.5 K, below which a Co-NQR peak splits due to an internal field at the Co site. From analyses of the Co NQR spectrum at 1.5 K, the internal field is evaluated to be \sim 300 Oe and is in the abab-plane. The magnitude of the internal field suggests that the ordered moment is as small as 0.015\sim 0.015 μB\mu_B using the hyperfine coupling constant reported previously. It is shown that the NQR frequency νQ\nu_Q correlates with magnetic fluctuations from measurements of NQR spectra and 1/T1T1/T_1T in various samples. The higher-νQ\nu_Q sample has the stronger magnetic fluctuations. A possible phase diagram in Nax_{x}CoO2y_{2}\cdot yH2_{2}O is depicted using TcT_c and νQ\nu_Q, in which the crystal distortion along the c-axis of the tilted CoO2_2 octahedron is considered to be a physical parameter. Superconductivity with the highest TcT_c is seemingly observed in the vicinity of the magnetic phase, suggesting strongly that the magnetic fluctuations play an important role for the occurrence of the superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp

    Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Get PDF
    Application of a curved vibrating wire method (CVM) to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4

    Unconventional Superconductivity and Nearly Ferromagnetic Spin Fluctuations in Nax_xCoO2_2y\cdot yH2_2O

    Full text link
    Co NQR studies were performed in recently discovered superconductor Nax_xCoO2_2y\cdot yH2_2O to investigate physical properties in the superconducting (SC) and normal states. Two samples from the same Nax_xCoO2_2 were examined, SC bilayer-hydrate sample with Tc4.7T_c \sim 4.7 K and non-SC monolayer-hydrate sample. From the measurement of nuclear-spin lattice relaxation rate 1/T11/T_1 in the SC sample, it was found that the coherence peak is absent just below TcT_c and that 1/T11/T_1 is proportional to temperature far below TcT_c. These results, which are in qualitatively agreement with the previous result by Fujimoto {\it et al.}, suggest strongly that unconventional superconductivity is realized in this compound. In the normal state, 1/T1T1/T_1T of the SC sample shows gradual increase below 100K down to TcT_c, whereas 1/T1T1/T_1T of the non-SC sample shows the Korringa behavior in this temperature range. From the comparison between 1/T1T1/T_1T and χbulk\chi_{\rm bulk} in the SC sample, the increase of 1/T1T1/T_1T is attributed to nearly ferromagnetic fluctuations. These remarkable findings suggest that the SC sample possesses nearly ferromagnetic fluctuations, which are possibly related with the unconventional superconductivity in this compound. The implication of this finding is discussed.Comment: 4 pages, 5 figures. submitted to J. Phys. Soc. Jp
    corecore