25,259 research outputs found

    Heterogeneous spin state in the field-induced phase of volborthite as seen via 51V nuclear magnetic resonance

    Full text link
    We report results of 51V NMR in the field-induced phase of volborthite Cu3V2O7(OH)dot2H2O, a spin-1/2 antiferromagnet on a distorted kagome lattice. In magnetic fields above 4.5 T, two types of V sites with different spin-echo decay rates are observed. The hyperfine field at the fast decaying sites has a distribution, while it is more homogeneous at the slowly decaying sites. Our results indicate a heterogeneous state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order.Comment: 5 pages, 4 figure

    Early X-ray/UV Line Signatures of GRB Progenitors and Hypernovae

    Full text link
    We calculate the X-ray/UV spectral line signatures expected from the interaction of a gamma-ray burst afterglow and a dense pre-burst environment produced by the progenitor. We explore the conditions under which Fe line and edge equivalent widths of ∌\sim 1 keV can arise, and discuss the possibility of gaining information about possible progenitor scenarios using X-ray metal line spectra in the first few days of a burst. A wind or supernova shell around the burst produces an X-ray absorption line spectrum and later emission lines, while a hypernova funnel model produces mainly emission lines. The Fe \ked can in some cases be more prominent than the Fe \kal line. Under simple assumptions for the input continuum luminosity, current reports of observed Fe line luminosities are compatible with an Fe-enriched funnel model, while lower values are expected in shell models.Comment: revisions to ApJ ms first submitted 8/21/99; uses a higher and flatter input spectrum, with modified implications suggesting preference for funnel model

    Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

    Get PDF
    We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explosion, best reproduces constraints on the mass of high velocity 56^{56}Ni, as inferred from the observed [Fe II] line profiles. The advantage of the binary merger progenitor model for the matter mixing is the flat and less extended ρ r3\rho \,r^3 profile of the C+O core and the helium layer, which may be characterized by the small helium core mass. From the best explosion model, the direction of the bipolar explosion axis (the strongest explosion direction), the neutron star (NS) kick velocity, and its direction are predicted. Other related implications and future prospects are also given

    On the ergoregion instability in rotating gravastars

    Full text link
    The ergoregion instability is known to affect very compact objects that rotate very rapidly and do not possess a horizon. We present here a detailed analysis on the relevance of the ergoregion instability for the viability of gravastars. Expanding on some recent results, we show that not all rotating gravastars are unstable. Rather, stable models can be constructed also with J/M^2 ~ 1, where J and M are the angular momentum and mass of the gravastar, respectively. The genesis of gravastars is still highly speculative and fundamentally unclear if not dubious. Yet, their existence cannot be ruled out by invoking the ergoregion instability. For the same reason, not all ultra-compact astrophysical objects rotating with J/M^2 <~ 1 are to be considered necessarily black holes.Comment: 10 pages, 7 figure

    Phase Diagram and Spin Dynamics in Volborthite with a Distorted Kagome Lattice

    Full text link
    We report 51V-NMR study on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice formed by isosceles triangles. In the magnetic fields below 4.5 T, a sharp peak in the nuclear spin-lattice relaxation rate 1/T1 accompanied with line broadening revealed a magnetic transition near 1 K. The low temperature phase shows anomalies such as a Lorentzian line shape, a 1/T1 propto T behavior indicating dense low energy excitations, and a large spin-echo decay rate 1/T2 pointing to unusually slow fluctuations. Another magnetic phase appears above 4.5 T with less anomalous spectral shape and dynamics.Comment: 4 pages, 4 figure

    Role of low-ll component in deformed wave functions near the continuum threshold

    Get PDF
    The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the Kπ=0+K^{\pi}=0^{+} states, where KK is the zz-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the Kπ=0+K^{\pi}=0^{+} resonant level exists physically unless the l=0l=0 component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed

    Fuel-cell performance of multiply-crosslinked polymer electrolyte membranes prepared by two-step radiation technique

    Get PDF
    A multiply-crosslinked polymer electrolyte membrane was prepared by the radiation-induced co-grafting of styrene and a bis(vinyl phenyl)ethane (BVPE) crosslinker into a radiation-crosslinked polytetrafluoroethylene (cPTFE) film. We then investigated its H2/O2 fuel-cell performance at 60 and 80ÂșC in terms of the effect of radiation and chemical crosslinking. At 60ÂșC, all the membranes initially exhibited similar performance, but only the cPTFE-based membranes were durable at 80ÂșC, indicating the necessity of radiation crosslinking in the PTFE main chains. Importantly, cell performance of the multiply-crosslinked membrane was found high enough to reach that of a Nafion112 membrane. This is probably because the BVPE crosslinks in the graft component improved the membrane-electrode interface in addition to membrane durability. After severe OCV hold tests at 80 and 95ÂșC, the performance deteriorated, while no significant change was observed in ohmic resistivity. Accordingly, our membranes seemed so chemically stable that an influence on overall performance loss could be negligible
    • 

    corecore