7 research outputs found

    Disrupted Functional Brain Connectivity in Partial Epilepsy: A Resting-State fMRI Study

    Get PDF
    Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy

    Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans

    No full text
    International audienc

    Prime Focus Spectrograph (PFS): a next-generation facility instrument of the Subaru telescope has started coming

    No full text
    PFS (Prime Focus Spectrograph) is a next generation facility instruments on the Subaru telescope. 2394 reconfigurable fibers will be distributed in the 1.3 degree field of view, and the spectrograph has 3 arms (blue, red, and near-infrared) to simultaneously observe spectra from 380nm to 1260nm in one exposure. In 2018, Metrology Camera System was delivered to the observatory and successfully tested on the telescope. Now in Nov 2019 the first spectrograph module with visible cameras is being shipped to Hawaii. The other subsystems are actively being developed to start on-sky engineering observation in 2020, and science operation in 2022. In this contribution, an overview of the current status and future perspectives will be presented

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase

    No full text
    International audiencePFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru's prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation

    Russian Approaches to Classification of Vegetation

    No full text

    TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs

    No full text
    corecore