22 research outputs found

    General synthesis method for bimetallic carbides of group VIIIA first row transition metals with molybdenum and tungsten

    Get PDF
    We have established a general method for the synthesis of two different stoichiometries of bimetallic carbides for each of the first row transition metals (TM) of Group VIIIA with tungsten and molybdenum. A dispersion of bimetallic carbide particles in a network of carbon was achieved using excess carbon during the carbothermic reduction process. An investigation into the reduction process revealed bimetallic carbide formation proceeding via stepwise reduction of oxide precursors to metals. The low carbon content phase TM 6(Mo/W)6C and the high carbon content phase TM 3(Mo/W)3C form within a temperature window of 60 °C which emphasizes the need for careful control over reaction conditions in order to form the desired phase pure product. © 2014 American Chemical Society

    Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    Get PDF
    © 2017 American Chemical Society. We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method composed of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon an increase in the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates using pyrolysis-gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized for tuning of the composition of the bio-oil downstream

    A Facile Synthesis of Highly Stable Modified Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim In this work a facile synthetic process for modified carbon nanotubes for ORR catalysis is described. X-ray photoemission spectroscopy (XPS) and Raman spectroscopy confirm the inclusion of surface carbonyl groups in these modified nanotubes. Via rotating disk electrode (RDE) experiments in an alkaline medium, the modified nanotubes were found to equal the activity of a Pt/C standard and exceed the stability of the platinum catalyst. Density functional theory (DFT) and scanning tunneling microscopy (STM) studies serve to provide theoretical and experimental electronic property information which explain the improved ORR activity seen by the modified nanotubes

    Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts

    Get PDF
    © 2017 Elsevier B.V. In this work, FeB, NiB, and FeNiB nanomaterials were examined as catalysts for catalytic transfer hydrogenolysis (CTH) using supercritical ethanol (sc-EtOH) as the hydrogen donor and reaction solvent. The earth-abundant alloys were synthesized using simple aqueous chemical reductions and characterized using ICP-OES, XRD, and STEM-EDS. Using acetophenone to model the desired catalytic reactivity, FeNiB was identified as having superior reactivity (74% conversion) and selectivity for complete deoxygenation to ethylbenzene (84%) when compared to the monometallic materials. Given its high reactivity and selectivity for deoxygenation over ring saturation, FeNiB was screened as a lignin valorization catalyst. FeNiB mediates deoxygenation of aliphatic hydroxyl and carbonyls in organosolv lignin via CTH in sc-EtOH. A combination of gel permeation chromatography, GC/MS, and NMR spectroscopy was used to demonstrate the production of a slate of monomeric phenols with intact deoxygenated aliphatic side chains. In total, these results highlight the utility of CTH for the valorization of biorefinery-relevant lignin using an inexpensive, earth-abundant catalyst material and a green solvent system that can be directly derived from the polysaccharide fraction of lignocellulosic biomass

    Environmentally Friendly Process for Recovery of Wood Preservative from Used Copper Naphthenate-Treated Railroad Ties

    Get PDF
    © 2017 American Chemical Society. Removal of copper naphthenate (CN) from used wooden railroad ties was investigated to improve the commercial viability of this biomass as a fuel source and avoid alternative disposal methods such as landfilling. Bench-scale thermal desorption of organic preservative components from CN-impregnated ties was followed by extraction of the copper fraction with ethylenediaminetetraacetic acid, 1-hydroxy ethylidene-1,1-diphosphonic acid, or 2,6-pyridine dicarboxylic acid (PDA). Naphthenic acid (NA) and carrier oil were recovered at desorption temperatures between 225 and 300 °C and could potentially be recycled to treat new ties. The thermal treatment also mimicked torrefaction, improving the biomass properties for use as a thermochemical conversion feedstock. Chelation with PDA, a biodegradable chelating agent, after desorption had the highest extraction efficiency of copper and other naturally present inorganics, extracting 100% of the copper from both the raw and 225 °C-treated samples. Optimized desorbed material showed a 64% decrease in ash content when extracted with PDA; however, extraction efficiency decreased as desorption temperature increased, indicating that thermal treatment caused the inorganics to be less extractable. We concluded that the optimum desorption conditions were between 250 and 275 °C for 45 min followed by extraction with PDA when considering both NA removal and inorganic extraction efficiency

    Electrocatalytic Activity and Stability Enhancement through Preferential Deposition of Phosphide on Carbide

    Get PDF
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Phosphides and carbides are among the most promising families of materials based on earth-abundant elements for renewable energy conversion and storage technologies such as electrochemical water splitting, batteries, and capacitors. Nickel phosphide and molybdenum carbide in particular have been extensively investigated for electrochemical water splitting. However, a composite of the two compounds has not been explored. Here, we demonstrate preferential deposition of nickel phosphide on molybdenum carbide in the presence of carbon by using a hydrothermal synthesis method. We employ the hydrogen evolution reaction in acid and base to analyze the catalytic activity of phosphide-deposited carbide. The composite material also shows superior electrochemical stability in comparison to unsupported phosphide. We anticipate that the enhanced electrochemical activity and stability of carbide deposited with phosphide will stimulate investigations into the preparation of other carbide–phosphide composite materials

    Vapor-Phase Stabilization of Biomass Pyrolysis Vapors Using Mixed-Metal Oxide Catalysts

    Get PDF
    © 2019 American Chemical Society. Mixed-metal oxides possess a wide range of tunability and show promise for catalytic stabilization of biomass pyrolysis products. For materials derived from layered double hydroxides, understanding the effect of divalent cation species and divalent/trivalent cation stoichiometric ratio on catalytic behavior is critical to their successful implementation. In this study, four mixed-metal oxide catalysts consisting of Al, Zn, and Mg in different stoichiometric ratios were synthesized and tested for ex-situ catalytic fast pyrolysis (CFP) using pine wood as feedstock. The catalytic activity and deactivation behavior of these catalysts were monitored in real-time using a lab-scale pyrolysis reactor and fixed catalyst bed coupled with a molecular beam mass spectrometer (MBMS), and data were analyzed by multivariate statistical approaches. In the comparison between Mg-Al and Zn-Al catalyst materials, we demonstrated that the Mg-Al materials possessed greater quantities of basic sites, which we attributed to their higher surface areas, and they produced upgraded pyrolysis vapors which contained less acids and more deoxygenated aromatic hydrocarbons such as toluene and xylene. However, detrimental impacts on carbon yields were realized via decarbonylation and decarboxylation reactions and coke formation. Given that the primary goals of catalytic upgrading of bio-oil are deoxygenation, reduction of acidity, and high carbon yield, these results highlight both promising catalytic effects of mixed-metal oxide materials and opportunities for improvement
    corecore