134 research outputs found

    Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies

    Get PDF
    BACKGROUND: We investigated fetal and total DNA levels in maternal plasma in patients bearing fetuses affected with Down syndrome in comparison to controls carrying fetuses with normal karyotype. METHODS: DNA levels in maternal plasma were measured using real-time quantitative PCR using SRY and β-globin genes as markers. Twenty-one pregnant women with a singleton fetus at a gestational age ranging from 15 to 19 weeks recruited before amniocentesis (carried out for reasons including material serum screening and advanced material age), and 16 pregnant women bearing fetuses affected with Down syndrome between 17 to 22 weeks of gestation were involved in the study. RESULTS: The specificity of the system reaches 100% (no Y signal was detected in 14 women pregnant with female fetuses) and the sensitivity 91.7% (SRY amplification in 22 of 24 examined samples). The median fetal DNA levels in women carrying Down syndrome (n=11) and the controls (n=13) were 23.3 (range 0–58.5) genome-equivalents/ml and 24.5 (range 0–47.5) genome-equivalents/ml of maternal plasma, respectively (P = 0.62). The total median DNA levels in pregnancies with Down syndrome and the controls were 10165 (range 615–65000) genome-equivalents/ml and 7330 (range 1300–36750) genome-equivalents/ml, respectively (P = 0.32). The fetal DNA proportion in maternal plasma was 0%-6 % (mean 0.8%) in women carrying Down syndrome and 0%-2.6 % (mean 0.7 %) in the controls, respectively (P=0.86). CONCLUSIONS: Our study revealed no difference in fetal DNA levels and fetal DNA: maternal DNA ratio between the patients carrying Down syndrome fetuses and the controls

    Nucleosomes in serum of patients with early cerebral stroke

    Get PDF
    Background: Nucleosomes are cell death products that are elevated in serum of patients with diseases that are associated with massive cell destruction. We investigated the kinetics of circulating nucleosomes after cerebral stroke and their correlation with the clinical status. Methods: In total, we analyzed nucleosomes by ELISA in sera of 63 patients with early stroke daily during the first week after onset. For correlation with the clinical pathology, patients were grouped into those with medium to slight functional impairment (Barthel Index BI >= 50) and those with severe functional impairment (BI = 50 showed a continuous increase in nucleosomes until day 5 (median: 523 arbitrary units, AU) followed by a slow decline. In contrast, patients with BI = 50 (497 AU; p = 0.031). Concerning the infarction volume, nucleosomes showed significant correlations for the concentrations on day 3 (r = 0.43; p = 0.001) and for the area under the curve (r = 0.34; p = 0.016). Conclusion: Even if nucleosomes are nonspecific cell death markers, their release into serum after cerebral stroke correlates with the gross functional status as well as with the infarction volume and can be considered as biochemical correlative to the severity of stroke. Copyright (c) 2006 S. Karger AG, Basel

    Noninvasive Prenatal Diagnosis of Fetal Trisomy 21 by Allelic Ratio Analysis Using Targeted Massively Parallel Sequencing of Maternal Plasma DNA

    Get PDF
    BACKGROUND: Plasma DNA obtained from a pregnant woman contains a mixture of maternal and fetal DNA. The fetal DNA proportion in maternal plasma is relatively consistent as determined using polymorphic genetic markers across different chromosomes in euploid pregnancies. For aneuploid pregnancies, the observed fetal DNA proportion measured using polymorphic genetic markers for the aneuploid chromosome would be perturbed. In this study, we investigated the feasibility of analyzing single nucleotide polymorphisms using targeted massively parallel sequencing to detect such perturbations in mothers carrying trisomy 21 fetuses. METHODOLOGY/PRINCIPAL FINDINGS: DNA was extracted from plasma samples collected from fourteen pregnant women carrying singleton fetuses. Hybridization-based targeted sequencing was used to enrich 2 906 single nucleotide polymorphism loci on chr7, chr13, chr18 and chr21. Plasma DNA libraries with and without target enrichment were analyzed by massively parallel sequencing. Genomic DNA samples of both the mother and fetus for each case were genotyped by single nucleotide polymorphism microarray analysis. For the targeted regions, the mean sequencing depth of the enriched samples was 225-fold higher than that of the non-enriched samples. From the targeted sequencing data, the ratio between fetus-specific and shared alleles increased by approximately 2-fold on chr21 in the paternally-derived trisomy 21 case. In comparison, the ratio is decreased by approximately 11% on chr21 in the maternally-derived trisomy 21 cases but with much overlap with the ratio of the euploid cases. Computer simulation revealed the relationship between the fetal DNA proportion, the number of informative alleles and the depth of sequencing. CONCLUSIONS/SIGNIFICANCE: Targeted massively parallel sequencing of single nucleotide polymorphism loci in maternal plasma DNA is a potential approach for trisomy 21 detection. However, the method appears to be less robust than approaches using non-polymorphism-based counting of sequence tags in plasma

    Noninvasive detection of F8 int22h-related inversions and sequence variants in maternal plasma of hemophilia carriers

    Get PDF
    Direct detection of F8 and F9 sequence variants in maternal plasma of hemophilia carriers has been demonstrated by microfluidics digital PCR. Noninvasive prenatal assessment of the most clinically relevant group of sequence variants among patients with hemophilia, namely, those involving int22h-related inversions disrupting the F8 gene, poses additional challenges because of its molecular complexity. We investigated the use of droplet digital PCR (ddPCR) and targeted massively parallel sequencing (MPS) for maternal plasma DNA analysis to noninvasively determine fetal mutational status in pregnancies at risk for hemophilia. We designed family-specific ddPCR assays to detect causative sequence variants scattered across the F8 and F9 genes. A haplotype-based approach coupled with targeted MPS was applied to deduce fetal genotype by capturing a 7.6-Mb region spanning the F8 gene in carriers with int22h-related inversions. The ddPCR analysis correctly determined fetal hemophilia status in 15 at-risk pregnancies in samples obtained from 8 to 42 weeks of gestation. There were 3 unclassified samples, but no misclassification. Detailed fetal haplotype maps of the F8 gene region involving int22h-related inversions obtained through targeted MPS enabled correct diagnoses of fetal mutational status in 3 hemophilia families. Our data suggest it is feasible to apply targeted MPS to interrogate maternally inherited F8 int22h-related inversions, whereas ddPCR represents an affordable approach for the identification of F8 and F9 sequence variants in maternal plasma. These advancements may bring benefits for the pregnancy management for carriers of hemophilia sequence variants; in particular, the common F8 int22h-related inversions, associated with the most severe clinical phenotype

    Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing

    Get PDF
    Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied 392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel sequencing. By using our previously reported standard z-score approach, we demonstrated that this approach could identify 36.0% and 73.0% of trisomy 13 and 18 at specificities of 92.4% and 97.2%, respectively. We aimed to improve the detection of trisomy 13 and 18 by using a non-repeat-masked reference human genome instead of a repeat-masked one to increase the number of aligned sequence reads for each sample. We then applied a bioinformatics approach to correct GC content bias in the sequencing data. With these measures, we detected all (25 out of 25) trisomy 13 fetuses at a specificity of 98.9% (261 out of 264 non-trisomy 13 cases), and 91.9% (34 out of 37) of the trisomy 18 fetuses at 98.0% specificity (247 out of 252 non-trisomy 18 cases). These data indicate that with appropriate bioinformatics analysis, noninvasive prenatal diagnosis of trisomy 13 and trisomy 18 by maternal plasma DNA sequencing is achievable

    Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome

    Get PDF
    Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. © Tsui et al.published_or_final_versio

    Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study.

    Get PDF
    To validate the clinical efficacy and practical feasibility of massively parallel maternal plasma DNA sequencing to screen for fetal trisomy 21 among high risk pregnancies clinically indicated for amniocentesis or chorionic villus sampling. Diagnostic accuracy validated against full karyotyping, using prospectively collected or archived maternal plasma samples. Prenatal diagnostic units in Hong Kong, United Kingdom, and the Netherlands. 753 pregnant women at high risk for fetal trisomy 21 who underwent definitive diagnosis by full karyotyping, of whom 86 had a fetus with trisomy 21. Intervention Multiplexed massively parallel sequencing of DNA molecules in maternal plasma according to two protocols with different levels of sample throughput: 2-plex and 8-plex sequencing. Proportion of DNA molecules that originated from chromosome 21. A trisomy 21 fetus was diagnosed when the z score for the proportion of chromosome 21 DNA molecules was >3. Diagnostic sensitivity, specificity, positive predictive value, and negative predictive value were calculated for trisomy 21 detection. Results were available from 753 pregnancies with the 8-plex sequencing protocol and from 314 pregnancies with the 2-plex protocol. The performance of the 2-plex protocol was superior to that of the 8-plex protocol. With the 2-plex protocol, trisomy 21 fetuses were detected at 100% sensitivity and 97.9% specificity, which resulted in a positive predictive value of 96.6% and negative predictive value of 100%. The 8-plex protocol detected 79.1% of the trisomy 21 fetuses and 98.9% specificity, giving a positive predictive value of 91.9% and negative predictive value of 96.9%. Multiplexed maternal plasma DNA sequencing analysis could be used to rule out fetal trisomy 21 among high risk pregnancies. If referrals for amniocentesis or chorionic villus sampling were based on the sequencing test results, about 98% of the invasive diagnostic procedures could be avoided.published_or_final_versio

    Genetic screening and democracy: lessons from debating genetic screening criteria in the Netherlands

    Get PDF
    Recent decades have witnessed increasing possibilities for genetic testing and screening. In clinical genetics, the doctor’s office defined a secluded space for discussion of sensitive reproductive options in cases of elevated risk for genetic disorders in individuals or their offspring. When prenatal screening for all pregnant women became conceivable, the potential increase in scale made social and ethical concerns relevant for the whole of society. Whereas genetic testing in clinical genetic practice was widely accepted, prenatal screening at a population level met with unease. Concerns were raised regarding social pressure to screen: the sum of individual choice might result in a ‘collective eugenics’. The government’s involvement also raised suspicion: actively offering screening evoked associations with eugenic population policies from the first half of the 20th century. By reconstructing elements of policy and public debate on prenatal screening in the Netherlands from the past 30 years, this article discusses how the government has gradually changed its role in balancing the interest of the individual and the collective on genetic reproductive issues. Against a background of increasing knowledge about and demand for prenatal screening among the population, governmental policy changed from focusing on protection by banning screening toward facilitating screening in a careful and ethically sound way by providing adequate information, decision aids and quality assessment instruments. In the meanwhile, invigorating democracy in public debate may entail discussing concepts of ‘the good life’ in relation to living with or without impairments and dealing with genetic information about oneself or one’s offspring

    Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment

    Get PDF
    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue

    A Uniform Genomic Minor Histocompatibility Antigen Typing Methodology and Database Designed to Facilitate Clinical Applications

    Get PDF
    BACKGROUND: Minor Histocompatibility (H) antigen mismatches significantly influence the outcome of HLA-matched allogeneic stem cell transplantation. The molecular identification of human H antigens is increasing rapidly. In parallel, clinical application of minor H antigen typing has gained interest. So far, relevant and simple tools to analyze the minor H antigens in a quick and reliable way are lacking. METHODOLOGY AND FINDINGS: We developed a uniform PCR with sequence-specific primers (PCR-SSP) for 10 different autosomal minor H antigens and H-Y. This genomic minor H antigen typing methodology allows easy incorporation in the routine HLA typing procedures. DNA from previously typed EBV-LCL was used to validate the methodology. To facilitate easy interpretation for clinical purposes, a minor H database named dbMinor (http://www.lumc.nl/dbminor) was developed. Input of the minor H antigen typing results subsequently provides all relevant information for a given patient/donor pair and additional information on the putative graft-versus-host, graft-versus-tumor and host-versus-graft reactivities. SIGNIFICANCE: A simple, uniform and rapid methodology was developed enabling determination of minor H antigen genotypes of all currently identified minor H antigens. A dbMinor database was developed to interpret the genomic typing for its potential clinical relevance. The combination of the minor H antigen genomic typing methodology with the online dbMinor database and applications facilitates the clinical application of minor H antigens anti-tumor targets after stem cell transplantation
    corecore