146 research outputs found
Increased placental expression of cannabinoid receptor 1 in preeclampsia
BackgroundThe endocannabinoid system plays a key role in female reproduction, including implantation, decidualization and placentation. In the present study, we aimed to analyze cannabinoid receptor 1 (CB1), CB2 and fatty acid amid hydrolase (FAAH) expressions and localization in normal and preeclamptic placenta, in order to determine whether placental endocannabinoid expression pattern differs between normal pregnancy and preeclampsia.MethodsEighteen preeclamptic patients and 18 normotensive, healthy pregnant women with uncomplicated pregnancies were involved in our case inverted question markcontrol study. We determined CB1, CB2 and FAAH expressions by Western blotting and immunohistochemistry in placental samples collected directly after Cesarean section.ResultsCB1 expression semi-quantified by Western blotting was significantly higher in preeclamptic placenta, and these findings were confirmed by immunohistochemistry. CB1 immunoreactivity was markedly stronger in syncytiotrophoblasts, the mesenchymal core, decidua, villous capillary endothelial and smooth muscle cells, as well as in the amnion in preeclamptic samples compared to normal pregnancies. However, we did not find significant differences between preeclamptic and normal placenta in terms of CB2 and FAAH expressions and immunoreactivity.ConclusionsWe observed markedly higher expression of CB1 protein in preeclamptic placental tissue. Increased CB1 expression might cause abnormal decidualization and impair trophoblast invasion, thus being involved in the pathogenesis of preeclampsia. Nevertheless, we did not find significant differences between preeclamptic and normal placental tissue regarding CB2 and FAAH expressions. While the detailed pathogenesis of preeclampsia is still unclear, the endocannabinoid system could play a role in the development of the disease
The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test
Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [I-123]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 +/- 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 +/- 5 years). The FD patients had a lower left plus right average striatal binding potential (BPNP) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BPNP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathway
Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens
Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further
Human malarial disease: a consequence of inflammatory cytokine release
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
Recommended from our members
Opioid Receptor Polymorphism A118G Associated with Clinical Severity in a Drug Overdose Population
Genetic variations in the human mu-opioid receptor gene (OPRM1) mediate individual differences in response to pain and opiate addiction. We studied whether the common A118G (rs1799971) mu-opioid receptor single nucleotide polymorphism (SNP) was associated with overdose severity in humans. In addition, we examined an SNP responsible for alternative splicing of OPRM1 (rs2075572). We assessed allele frequencies of the above SNPs and associations with clinical severity in patients presenting to the emergency department (ED) with acute drug overdose. This work was designed as an observational cohort study over a 12-month period at an urban teaching hospital. Participants consisted of consecutive adult ED patients with suspected acute drug overdose for whom discarded blood samples were available for analysis. Specimens were linked with clinical variables (demographics, urine toxicology screens, clinical outcomes) then deidentified prior to genetic SNP analysis. Blinded genotyping was performed after standard DNA purification and whole genome amplification. In-hospital severe outcomes were defined as either respiratory arrest (RA; defined by mechanical ventilation) or cardiac arrest (CA; defined by loss of pulse). We analyzed 179 patients (61% male, median age 32) who overall suffered 15 RAs and four CAs, of whom three died. The 118G allele conferred 5.3-fold increased odds of CA/RA (p<0.05), while the rs2075572 variant allele was not associated with CA/RA. The 118G variant allele in the OPRM1 gene is associated with worse clinical severity in patients with acute drug overdose. These findings mark the first time that the 118G variant allele is linked with clinical drug overdose vulnerability
Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression
Autoradiographic localization of extrastriatal D-2-dopamine receptors in the human brain using [I-125]epidepride
Coadministration of (-)-OSU6162 with L-DOPA normalizes preproenkephalin mRNA expression in the sensorimotor striatum of primates with unilateral 6-OHDA lesions
- …
