83 research outputs found

    Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators

    Full text link
    Three-dimensional (3D) topological insulators (TI) are novel quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The spin-helical Dirac surface states are expected to host exotic topological quantum effects and find applications in spintronics and quantum computation. The experimental realization of these ideas requires fabrication of versatile devices based on bulk-insulating TIs with tunable surface states. The main challenge facing the current TI materials exemplified by Bi2Se3 and Bi2Te3 is the significant bulk conduction, which remains unsolved despite extensive efforts involving nanostructuring, chemical doping and electrical gating. Here we report a novel approach for engineering the band structure of TIs by molecular beam epitaxy (MBE) growth of (Bi1-xSbx)2Te3 ternary compounds. Angle-resolved photoemission spectroscopy (ARPES) and transport measurements show that the topological surface states exist over the entire composition range of (Bi1-xSbx)2Te3 (x = 0 to 1), indicating the robustness of bulk Z2 topology. Most remarkably, the systematic band engineering leads to ideal TIs with truly insulating bulk and tunable surface state across the Dirac point that behave like one quarter of graphene. This work demonstrates a new route to achieving intrinsic quantum transport of the topological surface states and designing conceptually new TI devices with well-established semiconductor technology.Comment: Minor changes in title, text and figures. Supplementary information adde

    Ripple modulated electronic structure of a 3D topological insulator

    Full text link
    3D topological insulators, similar to the Dirac material graphene, host linearly dispersing states with unique properties and a strong potential for applications. A key, missing element in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Analogy with graphene suggests a possible avenue via a topographic route by the formation of superlattice structures such as a moir\'e patterns or ripples, which can induce controlled potential variations. However, while the charge and lattice degrees of freedom are intimately coupled in graphene, it is not clear a priori how a physical buckling or ripples might influence the electronic structure of topological insulators. Here we use Fourier transform scanning tunneling spectroscopy to determine the effects of a one-dimensional periodic buckling on the electronic properties of Bi2Te3. By tracking the spatial variations of the scattering vector of the interference patterns as well as features associated with bulk density of states, we show that the buckling creates a periodic potential modulation, which in turn modulates the surface and the bulk states. The strong correlation between the topographic ripples and electronic structure indicates that while doping alone is insufficient to create predetermined potential landscapes, creating ripples provides a path to controlling the potential seen by the Dirac electrons on a local scale. Such rippled features may be engineered by strain in thin films and may find use in future applications of topological insulators.Comment: Nature Communications (accepted

    Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds

    Full text link
    Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and experimentally realized in a quantum wells based on binary semiconductor HgTe[1-3]. QSH state and topological insulators are the new states of quantum matter interesting both for fundamental condensed matter physics and material science[1-11]. Many of Heusler compounds with C1b structure are ternary semiconductors which are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the band gap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by lattice parameter) and the magnitude of spin-orbit coupling (by the atomic charge). Based on the first-principle calculations we demonstrate that around fifty Heusler compounds show the band inversion similar to HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantum well structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare earth element Ln which can realize additional properties ranging from superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors.Comment: 20 pages, 5 figure

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Search for a Light Sterile Neutrino at Daya Bay

    Get PDF
    published_or_final_versio

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs
    corecore