1,130 research outputs found

    Skew angle optimization analysis of a permanent magnet synchronous motor for EVs

    Full text link
    © 2018 IEEE. In this paper, the skew angle of the permanent magnet synchronous motor (PMSM) for electric vehicles (EVs) is studied. The stability of the output torque of the driving motor is important for the EVs. The influence of skew angle on the Back-electromotive force, cogging torque, and output torque are studied by finite element analysis. The optimum skew angle of the stator slot is analyzed for the prototype. The results show that the proposed PMSM has better comprehensive performance after the optimization of the skew angle

    基于形态分割的高分辨率遥感影像道路提取

    Get PDF
    Author name used in this publication: 朱长青Author name used in this publication: 马秋禾Author name used in this publication: SHI Wen-zhong2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    基于多进制小波变换的图象放大方法

    Get PDF
    Author name used in this publication: 朱长青Author name used in this publication: 陈虹2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Visualization of vortex motion in FeAs-based BaFe<inf>1.9</inf>Ni <inf>0.1</inf>As<inf>2</inf> single crystal by means of magneto-optical imaging

    Full text link
    Superconductivity has been found in newly discovered iron-based compounds. This paper studies the motion of magnetic vortices in BaFe1.9Ni 0.1As2 single crystal by means of the magneto-optical imaging technique. A series of magneto-optical images reflecting magnetic flux distribution at the crystal surface were taken when the crystal was zero-field cooled to 10 K. The behavior of the vortices, including penetration into and expulsion from the single crystal with increasing and decreasing external fields, respectively, is discussed. The motion behavior is similar to that observed in high-Tc superconducting cuprates with strong vortex pinning; however, the flux-front is irregular due to randomly distributed defects in the crystal. © 2011 American Institute of Physics

    Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2

    Get PDF
    We use resonant elastic x-ray scattering to determine the evolution of magnetic order in EuCd2As2 below TN = 9.5 K, as a function of temperature and applied magnetic field. We find an A-type antiferromagnetic structure with in-plane magnetic moments, and observe dramatic magnetoresistive effects associated with field-induced changes in the magnetic structure and domain populations. Our ab initio electronic structure calculations indicate that the Dirac dispersion found in the nonmagnetic Dirac semimetal Cd3As2 is also present in EuCd2As2, but is gapped for T <TN due to the breaking of C3 symmetry by the magnetic structure

    Enhanced Hsp70 Expression Protects against Acute Lung Injury by Modulating Apoptotic Pathways

    Get PDF
    The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury

    Evolution of the Magnetic Excitations in NaOsO3 through its Metal-Insulator Transition

    Get PDF
    The temperature dependence of the excitation spectrum in NaOsO 3 through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic x-ray scattering at the Os L 3 edge. High-resolution ( Δ E ∼ 56     meV ) measurements show that the well-defined, low-energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in NaOsO 3 [J. G. Vale, S. Calder, C. Donnerer, D. Pincini, Y. G. Shi, Y. Tsujimoto, K. Yamaura, M. M. Sala, J. van den Brink, A. D. Christianson, and D. F. McMorrow, Phys. Rev. B 97, 184429 (2018)]

    Enhanced spin-phonon-electronic coupling in a 5d oxide

    Get PDF
    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.open0
    corecore