2,147 research outputs found

    Characterization of light production and transport in tellurium dioxide crystals

    Get PDF
    Simultaneous measurement of phonon and light signatures is an effective way to reduce the backgrounds and increase the sensitivity of CUPID, a next-generation bolometric neutrinoless double-beta decay (0νββ) experiment. Light emission in tellurium dioxide (TeO2) crystals, one of the candidate materials for CUPID, is dominated by faint Cherenkov radiation, and the high refractive index of TeO2 complicates light collection. Positive identification of 0νββ events therefore requires high-sensitivity light detectors and careful optimization of light transport. A detailed microphysical understanding of the optical properties of TeO2 crystals is essential for such optimization. We present a set of quantitative measurements of light production and transport in a cubic TeO2 crystal, verified with a complete optical model and calibrated against a UVT acrylic standard. We measure the optical surface properties of the crystal, and set stringent limits on the amount of room-temperature scintillation in TeO2 for β and α particles of 5.3 and 8 photons/MeV, respectively, at 90% confidence. The techniques described here can be used to optimize and verify the particle identification capabilities of CUPID

    A pancake-shaped nano-aggregate for focusing surface plasmons

    Get PDF
    We proposed a pancake-shaped nano-aggregate that highly focuses surface plasmons. The structure is a superposition of bowtie-shaped dimers, where surface plasmons are excited, resonated with the structure, and coupled. Surface integral equation method (Poggio-Miller-Chang-Harrington-Wu-Tsai method) is used to predict the performance of the proposed structure. It is a method which can accurately calculate the near-fields of nanoparticles. Based on the numerical prediction, the proposed structure shows an electric field (E-field) enhancement of more than 400 times, which is equivalent to a Raman enhancement factor of more than 2.5 e 10 times. It is promising for single molecule detections using surface-enhanced Raman scattering. The physics of the proposed structure are revealed. It is useful to design nanostructures for high E-field enhancement. © 2012 American Institute of Physics.published_or_final_versio

    Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4@SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties.This work was supported by the National Natural Science Foundation of China (Grant No. 51032007, 51472222 and 51372232), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006) and the the Fundamental Research Funds for the Central Universities (Grant No. 2652015024 and 2652015310). We thank Mr. Bin Ma and Miss Ling Zhu for their help to this experiment

    High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Get PDF
    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated

    First measurement of the T-violating muon polarization in the decay K^+ --> mu^+ nu gamma

    Full text link
    We present the result of the first measurement of the T-violating muon polarization P_T in the decay K^+ --> mu^+ nu gamma. This polarization is sensitive to new sources of CP-violation in the Higgs sector. Using data accumulated in the period 1996-98 we have obtained P_T = (-0.64 +- 1.85(stat) +- 0.10(syst))x10^{-2} which is consistent with no T-violation in this decay.Comment: 11 pages, 8 figure

    Tripraseodymium chloride bis(orthosilicate), Pr-3(SiO4)(2)Cl

    Get PDF
    Pr-3(SiO4)(2)Cl is isostructural with La-3(SiO4)(2)Cl. The Pr(1)O7Cl polyhedron is irregular. The Pr(2)O8Cl2 polyhedron is a distorted square antiprism with the Cl atom capping distorted square faces. The site of Pr(2) can also be described as at the centre of a Pr(2)(SiO4)(4)Cl-2 octahedron. The structure comprises layers of Pr(2)(SiO4)(4)Cl-2 octahedra separated in the a direction by Pr(1) cations occupying the Pr(1)O7Cl polyhedral sites. The Cl atom is four-coordinate forming a distorted square

    Dysprosium tantalum oxide, DyTa7O19

    Get PDF
    Crystals of DyTa7O19 were obtained by a chemical transport reaction using NH4Cl as the transport agent, The structure was refined in space group P (6) over bar c2 and is built up from double layers of Ta2 polyhedra, which may be described as edge-shared pentagonal bipyramids, alternating with layers of [Ta3Dy3O30] rings

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change
    corecore