14 research outputs found

    List of Zooplankton Taxa in the Caspian Sea Waters of Iran

    Get PDF
    A total of 61 zooplankton taxa were found in the southwestern Caspian Sea between 1996 and 2010. Thirteen of them were meroplankton taxa and forty-eight were holoplankton taxa. The occurrence of 14 freshwater taxa indicated the influence of the Anzali wetland and river inflows. The decrease in zooplankton taxa was detected since 1996-1997 and continued till 2010. Pleopis polyphemoides, the only one out of the nine recorded Cladocera species in 1996-1997, was found after 2001. Similarly, of the five Copepoda species recorded in 1996-1997, only one, Acartia tonsa, was found abundant during the 2001–2010 sampling period. It was striking that many species which were abundant in the Caspian Sea in 1996-1997 were not found after 2000. Many reasons could have contributed to the changes in the zooplankton composition of the southern Caspian Sea, notably the serious environmental degradation since the early 1990s. It is also possible that invasive species might play a role in wiping out some sensitive endemic species

    Spatiotemporal dispersal study of mangrove Avicennia marina and Rhizophora apiculata propagules

    Get PDF
    The propagule dispersal pattern of the two common mangrove species, Avicennia marina (Forsk.) Vierh. and Rhizophora apiculata Blume at a mangrove fringed coast, in the southwest tip of Penang Island was examined. Propagule dispersal study of both species were carried out by release and recapture method, while early developments of propagule were observed by an on-site tethering system. A. marina propagules recorded higher dispersal rate as compared to R. apiculata. After 60 tidal cycles, almost all propagules had moved away from the initial release site under the influence of strong wave current. The A. marina propagules were observed to grow better and faster than the R. apiculata propagules. However, the propagules of both species eventually failed to establish at the study site due to strong wave effect as well as unfavourable soil condition. A. marina and R. apiculata were found to adopt different strategies in propagule dispersal and early growth. A. marina was notably better adapted to thrive in the coastal environment. In a similar open coastal area, wave current and soil condition are suggested to be the most critical factors affecting the mangrove propagule dispersal and early establishment

    Application of a Comprehensive Rock Slope Stability Assessment Approach for Selected Malaysian Granitic Rock Slopes (Pengaplikasian Pendekatan Penilaian Kestabilan Cerun Batu Komprehensif untuk Cerun Batu Granit Malaysia yang Terpilih)

    Get PDF
    In Malaysia, rock slope stability analysis has been largely confined to kinematic analysis with rock mass rating systems as assessment tools for stability analysis. While this method addresses the fundamental issues of rock slope stability including identifying potential failure modes, an information gap still exists between geologists and engineers in designing proper mitigation measures for rock slopes. This paper aims to address this issue by incorporating several methodologies, including kinematic analysis, slope mass rating and the Barton-Bandis criterion for the limit equilibrium method. Four rock slopes with potential instabilities namely KSA, KSB, LHA, and LHB were studied. KSA and KSB were located near Kajang, Selangor while LHA and LHB were located near Rawang, Selangor. Each slope exhibits multiple potential failures, with attention given on sliding-type failures in planar or wedge form. A slope mass rating value was assigned to each potential failure based on rock mass ratingbasic and the slope mass rating based on readjustments for discontinuity orientation and excavation method. Factor of safety from limit equilibrium method show potentially unstable blocks and failed blocks (Factor of Safety <1.00) with confirmation on site. Water filling of discontinuity apertures plays an important role in destabilizing rock blocks, especially in wet conditions experienced in Malaysia’s tropical climate. Several geometries are identified as potentially unstable due to low slope mass rating (Class V) and factor of safety of <1.2, such as planar J5 and wedge J2*J5 at KSA, wedge forming with sets J3, J4 and fault plane at KSB, planar J2 at LHA, and wedge J3*J4 at LHB. Stabilization structures such as rock bolts can be better designed with the determined factor of safety values coupled with relevant geological and geotechnical inputs. In this comprehensive rock slope stability assessment approach, limit equilibrium method serves as a useful method in analyzing rock slope stability to complement kinematic analysis and stability ratings often used in Malaysia

    Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASEC′16

    Get PDF
    Isoprene (C5H8) plays an important role in the formation of surface ozone (O3) and the secondary organic aerosol (SOA) which contributed to the climate change. This study aims to determine hourly distribution of tropospheric isoprene over the Western Coast of Antarctic Peninsula (WCAP) during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC′16). In-situ measurements of isoprene were taken using a custom-built gas chromatography with photoionization detector, known as iDirac. Biological parameters such as chlorophyll a (chl-a) and particulate organic carbon (POC) were compared to the in-situ isoprene measurements. Significant positive correlation was observed between isoprene and POC concentrations (r2 = 0.67, p < 0.001), but not between isoprene and chl-a. The hotspots of isoprene over maritime Antarctic were then were investigated using NAME dispersion model reanalysis. Measurements showed that isoprene mixing ratio were the highest over region of King George Island, Deception Island and Booth Island with values of ∼5.0, ∼0.9 and ∼5.2 ppb, respectively. Backward trajectory analysis showed that air masses may have lifted the isoprene emitted by marine algae. We believe our findings provide valuable data set of isoprene estimation over the under sampled WCAP

    Uniaxial compressive strength of Antarctic Peninsula rocks: Schmidt hammer rebound test

    Get PDF
    The uniaxial compressive strength test is a destructive and time consuming test. A number of non-destructive methods using portable testing equipment are more applicable and easier to conduct. This paper presents the results of a systematic approach to determine the uniaxial compressive strength of rock material using the Schmidt hammer rebound test. A total of five distinct locations (Graham Coast, Davis Coast, Nanson Island, Danco Coast and Trinity Island) were tested using the Schmidt rebound hammer test. Peninsula Antarctic located at northwest of Antarctic region comprising of igneous and metamorphic rocks. Statistical analysis of the results at 95% confidence level showed the Schmidt rebound value of the Graham Coast ranges from 40±1.7 to 41±1.3 with standard deviation of 8.2 to 6.4. The rebound value for Davis Coast was 39±1.6 with standard deviation of 7.7. Rocks from Nanson Island and Danco Coast have the Schmidt rebound value of 54±1.7 with standard deviation of 8.0 and 36±1.3 with standard deviation of 6.2, respectively. The Schmidt rebound value of rocks at Trinity Island ranges from 29±1.4 to 32±1.7 with standard deviation of 6.8 to 8.1. Thus, the respective uniaxial compressive strengths of rock materials from Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were 73-108, 50, 59, 164 and 45-59 MPa. The respective ISRM strength classification of rock materials of Graham Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island were strong (R4) to very strong rock (R5), medium strong rock (R3), strong rock (R4), very strong rock (R5) and medium strong (R3) to strong rock (R4). The results showed a mean of quantification of rock material strength based on the Schmidt Hammer rebound test in Antarctic Peninsula

    Application of a comprehensive rock slope stability assessment approach for selected Malaysian granitic rock slopes

    Get PDF
    In Malaysia, rock slope stability analysis has been largely confined to kinematic analysis with rock mass rating systems as assessment tools for stability analysis. While this method addresses the fundamental issues of rock slope stability including identifying potential failure modes, an information gap still exists between geologists and engineers in designing proper mitigation measures for rock slopes. This paper aims to address this issue by incorporating several methodologies, including kinematic analysis, slope mass rating and the Barton-Bandis criterion for the limit equilibrium method. Four rock slopes with potential instabilities namely KSA, KSB, LHA, and LHB were studied. KSA and KSB were located near Kajang, Selangor while LHA and LHB were located near Rawang, Selangor. Each slope exhibits multiple potential failures, with attention given on sliding-type failures in planar or wedge form. A slope mass rating value was assigned to each potential failure based on rock mass ratingbasic and the slope mass rating based on readjustments for discontinuity orientation and excavation method. Factor of safety from limit equilibrium method show potentially unstable blocks and failed blocks (Factor of Safety <1.00) with confirmation on site. Water filling of discontinuity apertures plays an important role in destabilizing rock blocks, especially in wet conditions experienced in Malaysia’s tropical climate. Several geometries are identified as potentially unstable due to low slope mass rating (Class V) and factor of safety of <1.2, such as planar J5 and wedge J2*J5 at KSA, wedge forming with sets J3, J4 and fault plane at KSB, planar J2 at LHA, and wedge J3*J4 at LHB. Stabilization structures such as rock bolts can be better designed with the determined factor of safety values coupled with relevant geological and geotechnical inputs. In this comprehensive rock slope stability assessment approach, limit equilibrium method serves as a useful method in analyzing rock slope stability to complement kinematic analysis and stability ratings often used in Malaysia

    The strategic establishment of the Malaysian Mangrove Research Alliance and Network (MyMangrove)

    No full text
    The Malaysian Mangrove Research Alliance and Network (MyMangrove) was established in recognition of the needs for a collaborative effort to significantly influence the management and conservation of mangrove forests through research and education. MyMangrove brings scientists and researchers together, to join forces in exploration and enhancement of scientific knowledge on mangroves and their connecting habitats and ecosystems. The goal of the establishment of MyMangrove is chiefly to close the gap and create a functional and efficient scientific networking among scientists and researchers. It also anticipates at improving public communications on mangrove-related issues and to influence the landscape of policies and regulations pertaining to mangrove management and conservation, particularly in the context of Malaysia. Ultimately, MyMangrove aims at being a strategic platform for the local communities, NGOs, students, corporate sectors and government agencies to collaborate with the multi-and inter-disciplinary group of scientists and researchers from universities and agencies on all matters concerning mangroves and their interconnectedness with other coastal and marine habitats
    corecore