256 research outputs found
On the Successful Encapsulation of Water Droplets into Oil Droplets
Compound water-in-oil microdroplets can serve as microreactors in chemical and biological analyses. The inkjet printing is a useful technique to generate compound microdroplets by droplet impact. To understand the underlying physics during the droplet impact, a combined experimental and numerical study is carried out. The effect of spreading condition, impact velocity, and oil viscosity are investigated. The balance of the tripe-line among the three interfaces dominates primarily the stable morphology of the compound droplet. Reducing oil viscosity can reduce the required impact velocity. High impact velocity is necessary to reduce the side-slipping of the water droplet
A possible method for non-Hermitian and non--symmetric Hamiltonian systems
A possible method to investigate non-Hermitian Hamiltonians is suggested
through finding a Hermitian operator and defining the annihilation and
creation operators to be -pseudo-Hermitian adjoint to each other. The
operator represents the -pseudo-Hermiticity of Hamiltonians.
As an example, a non-Hermitian and non--symmetric Hamiltonian with
imaginary linear coordinate and linear momentum terms is constructed and
analyzed in detail. The operator is found, based on which, a real
spectrum and a positive-definite inner product, together with the probability
explanation of wave functions, the orthogonality of eigenstates, and the
unitarity of time evolution, are obtained for the non-Hermitian and
non--symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be
coupled when it is extended to the canonical noncommutative space with
noncommutative spatial coordinate operators and noncommutative momentum
operators as well. Our method is applicable to the coupled Hamiltonian. Then
the first and second order noncommutative corrections of energy levels are
calculated, and in particular the reality of energy spectra, the
positive-definiteness of inner products, and the related properties (the
probability explanation of wave functions, the orthogonality of eigenstates,
and the unitarity of time evolution) are found not to be altered by the
noncommutativity.Comment: 15 pages, no figures; v2: clarifications added; v3: 16 pages, 1
figure, clarifications made clearer; v4: 19 pages, the main context is
completely rewritten; v5: 25 pages, title slightly changed, clarifications
added, the final version to appear in PLOS ON
Uneven splitting-ratio 1x2 multimode interference splitters based on silicon wire waveguides
Two types of 1x2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3x18.2 and 3x14.3 (mu m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function
Hybrid Mechanical Systems
We discuss hybrid systems in which a mechanical oscillator is coupled to
another (microscopic) quantum system, such as trapped atoms or ions,
solid-state spin qubits, or superconducting devices. We summarize and compare
different coupling schemes and describe first experimental implementations.
Hybrid mechanical systems enable new approaches to quantum control of
mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see
Journal-ref and DOI). This v2 corresponds to the published versio
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH)2 Template
A size-controlled Zn(OH)2 template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH)2 octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process without loss of the original shape of Zn(OH)2 template. Ion-replacement reaction is suitable for fabrication of hollow sulfides based on the solubility difference between Zn(OH)2 and products. Controlled chemical deposition is utilized to coat an oxide layer on the surface of Zn(OH)2 template. The abundant hydroxyl groups on Zn(OH)2 afford strong coordination ability with cations and help to the coating of a shell layer. The rudimental Zn(OH)2 core is eliminated with ammonia solution. In addition, ZnO-based heterostructures possessing better chemical or physical properties can also be prepared via this unique templating process. Room-temperature photoluminescence spectra of the heterostructures and hollow structures are also shown to study their optical properties
Gate-tunable Topological Valley Transport in Bilayer Graphene
Valley pseudospin, the quantum degree of freedom characterizing the
degenerate valleys in energy bands, is a distinct feature of two-dimensional
Dirac materials. Similar to spin, the valley pseudospin is spanned by a time
reversal pair of states, though the two valley pseudospin states transform to
each other under spatial inversion. The breaking of inversion symmetry induces
various valley-contrasted physical properties; for instance, valley-dependent
topological transport is of both scientific and technological interests.
Bilayer graphene (BLG) is a unique system whose intrinsic inversion symmetry
can be controllably broken by a perpendicular electric field, offering a rare
possibility for continuously tunable valley-topological transport. Here, we
used a perpendicular gate electric field to break the inversion symmetry in
BLG, and a giant nonlocal response was observed as a result of the topological
transport of the valley pseudospin. We further showed that the valley transport
is fully tunable by external gates, and that the nonlocal signal persists up to
room temperature and over long distances. These observations challenge
contemporary understanding of topological transport in a gapped system, and the
robust topological transport may lead to future valleytronic applications
Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR
Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5α-androstan-3β-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches
- …