2,593 research outputs found

    Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation

    Get PDF
    Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for the production of keratinase and the degradation of feather. Ammonia salt and nitrate salt strongly restricted the production of keratinase and the degradation of feather. Result of Box-Behnken design (BBD) experiment which was used to optimize concentrations of glucose, corn steep flour and K2HPO4 for further improvement of keratinase productivity showed that the optimal medium was composed of glucose (20 g/l), corn steep flour (7.5 g/l), K2HPO4 (1 g/l) and feather (20 g/l). The result of submerged batch cultivation of B. licheniformis ZJUEL31410 in the 5 L fermentor indicated that the optimal medium had the highest keratinase and the degree of feather degradation (DFD) at 54.9 U/ml and 72.4%; both were 5 times more than the basal medium. The degradation of feather was verified by the analysis of scanning electron microscopy (SEM). This study provides a foundation for the production of keratinase and the conversion of feather to soluble protein through submerged fermentation process by B. licheniformis ZJUEL31410.Key words: Bacillus licheniformis ZJUEL31410, keratinase, culture medium, optimization, Box-Behnken design, scanning electron microscopy, feather degradation

    A Time-Resolved Line-Focus Acoustic Microscopy Technique for Surface-Breaking Crack Depth Determination

    Get PDF
    Time-resolved line-focus acoustic microscopy (TRLFAM) combines the advantages of a conventional pulse-echo system with those of the acoustic microscope. Compared to high frequency line-focus acoustic microscopy [1], this technique employs a much larger (aperture 28mm) pulsed line-focus immersion transducer at much lower center frequencies. The insonified length of the specimen is an order of magnitude larger than that of the line-focus acoustic microscope operating at 225 MHz. This has the advantage that the amplitudes and the arrival times of the directly reflected wave, the leaky surface wave as well as other possible echo arrivals, can be time-resolved with considerable accuracy when the sample is moved inside the focal region of the transducer. Moreover, since the transducer is line focused, for an anisotropic material leaky surface wave arrivals can be time resolved along different directions. In earlier papers TRLFAM has been used to determine elastic constants for both isotropic and anisotropic materials [2]

    10Be和26Ai揭示的合黎山西南部侵蚀速率初步研究

    Get PDF
    地表侵蚀速率是衡量地貌演化的一个重要因子。本研究利用原地宇宙成因核素 10Be 和 26Al 对合黎山西南部地表岩石侵蚀速率进行了首次测定。结果显示:约 30 ka 以来,合黎山西南部的地表岩石侵速率约为 24 mm∙ka-1。这一结果与已见报道的其他基岩侵蚀速率值一致。这一结果与 Small et al 获得的非干旱地区的基岩侵蚀速率也基本一致,但是显著高于干旱的南极地区和半干旱的澳大利亚。10Be 和26Al 获得的侵蚀速率的良好一致性表明本研究中所用侵蚀模式的有效性。所得的侵蚀速率小于 Palumbo et al 测定的合黎山平均流域侵蚀速率(99 mm∙ka-1),原因解释尚待更多地点和样品的研究。<br style="line-height: normal; text-align: -webkit-auto; text-size-adjust: auto;" /

    3D thermal analysis of a permanent magnet motor with cooling fans

    Get PDF
    Overheating of permanent magnet (PM) machines has become a major technical challenge as it gives rise to magnet demagnetization, degradation of insulation materials, and loss of motor efficiency. This paper proposes a state-of-the-art cooling system for an axial flux permanent magnet (AFPM) machine with the focus on its structural optimization. A computational fluid dynamics (CFD) simulation with thermal consideration has been shown to be an efficient approach in the literature and is thus employed in this work. Meanwhile, a simplified numerical approach to the AFPM machine with complex configuration in 3D consisting of conduction, forced convection, and conjugate heat transfer is taken as a case study. Different simplification methods (including configuration and working conditions) and two optimized fans for forced convection cooling are designed and installed on the AFPM machine and compared to a natural convection cooling system. The results show that the proposed approach is effective for analyzing the thermal performance of a complex AFPM machine and strikes a balance between reasonable simplification, accuracy, and computational resource

    In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing

    Get PDF
    In this study, an in situ chemical synthesis approach has been developed to prepare graphene–Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV–Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing

    From Scutellaria barbata to BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence

    Get PDF
    Scutellaria barbata D.Don is a popular Chinese medicinal plant documented to treat cancer patients in traditional Chinese medicine (TCM). A botanical new investigational drug for breast cancer BZL101 (FDA IDN# 59521) was previously developed in the United States from the aqueous extract of the aerial parts from S. barbata. The early phase 1A and 1B clinical trials show its favorable toxicity profiles, good clinical tolerance, and promising efficacy for patients with metastatic breast cancer. To further evidence the phytopharmacology research, drug development, and anticancer use of this herb, a systematic literature review was performed herein on the phytochemistry, pharmacology, and specifically anticancer clinical evidence. A systematic review of the literature on phytochemical and pharmacological properties of the plant related to cancer treatment employed several web-based scientific databases including Wanfang (Chinese), Pubmed, Web of Science, and Elsevier. Key words included Scutellaria barbata, Ban Zhi Lian, cancer, and tumor. Based on critical quality criteria, only 8 out of 69 reports related to clinical studies of cancer patients in China. This review covered the available literature up to July 2019. The anticancer effects of S. barbata can be explained by the presence of various flavonoids and diterpenoids alkaloids. The underlying mechanisms are primarily summarized as cyclin/cyclin-dependent kinase (CDK)-modulated cell cycle arrest and mitochondria-mediated apoptotic death. The highly cancer-cell selective cytotoxicity and detoxifying effects of S. barbata contribute to a favorable clinical profile and enhanced quality of life for the cancer patient, thereby demanding further study as an adjuvant or alternative to conventional chemotherapy. The phytochemical and pharmacological studies reviewed strongly underpin a fundamental understanding of the anticancer activity of S. barbata and support ongoing clinical trials. The further safety verification and clinical trials are expected to progress S. barbata-based development to finally transform the traditional TCM herb S. barbata to the valuable anticancer drug

    Solution Structure of Tensin2 SH2 Domain and Its Phosphotyrosine-Independent Interaction with DLC-1

    Get PDF
    Background: Src homology 2 (SH2) domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1) via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode. Principal Findings: Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five b-strands flanked by two a-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1) as well as phosphorylated ligand. Conclusions: We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
    corecore