331 research outputs found
Experimental demonstration of a long-period grating based on the sampling theorem
We demonstrate experimentally the feasibility of a long-period grating whose index change pattern is in the form of sampling a raised-cosine function. We call such a grating a long-period grating based on the sampling theorem (LPGST). The LPGST is thermo-optically induced by an array of electrodes with individual widths. The array period is equal to the sampling period of 100 ??m, and the period of the sampled function is 395 ??m. A fabricated polymer long-period waveguide grating using the LPGST has a desired resonance band in its transmission spectrum, which is generated by the periodicity of the sampled function.open2
Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.1110Ysciescopu
Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear.
GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.1110Ysciescopu
Ripple Texturing of Suspended Graphene Atomic Membranes
Graphene is the nature's thinnest elastic membrane, with exceptional
mechanical and electrical properties. We report the direct observation and
creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene
sheets, using spontaneously and thermally induced longitudinal strains on
patterned substrates, with control over their orientations and wavelengths. We
also provide the first measurement of graphene's thermal expansion coefficient,
which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work
enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure
New CZE-DAD method for honeybee venom analysis and standardization of the product
The aim of this study was to develop a new precise and accurate CZE-DAD method for honeybee venom analysis using cytochrome c as an internal standard. The 64.5 cm total length, 56 cm effective length, 75 μm ID, and 360 μm OD uncoated fused-silica capillary was used. The samples were injected into the capillary under a 50-mbar pressure for 7 s. There were 15 kV of electric field across the capillary applied. The current intensity was 26 μA. The separation was carried out at 25 °C. The analysis was run with the normal electrode polarity. The following steps and parameters were taken into account for the validation of the developed method: selectivity, precision, accuracy, linearity, limit of detection and limit of quantitation. All steps of the validation procedure proved that the developed analytical procedure was suitable for its intended purpose. Possibly this was the first study in which several honeybee venom components were separated and five of them were identified by capillary zone electrophoresis. In addition, the developed method was applied for quantitative analysis of 38 honeybee venom samples. The content (relative to the dry venom mass) of analyzed peptides in honeybee venom samples collected in 2002–2007 was as follows: apamine from 0.93% to 4.34% (mean, 2.85 ± 0.79%); mast cell degranulating peptide (MCDP) from 1.46% to 4.37% (mean, 2.82 ± 0.64%); phospholipase A2 from 7.41% to 20.25% (mean, 12.95 ± 3.09%); melittin from 25.40% to 60.27%, (mean, 45.91 ± 9.78%). The results were compared with the experimental data obtained for the same venom samples analyzed earlier by the HPLC method. It was stated that HPCE and HPLC data did not differ significantly and that the HPCE method was the alternative for the HPLC method. Moreover, using the results obtained principal component analysis (PCA) was applied to clarify the general distribution patterns or similarities of four major honeybee venom constituents collected from two different bee strains in various months and years. PCA has shown that the strain of bee appears to be the only criteria for bee venom sample classification. Strong correlations between apamine, MCDP, phospholipase A2, and melittin were confirmed. These correlations have to be taken into account in the honeybee venom standardization. The developed method due to its simplicity can be easily automated and incorporated into routine operations both in the bee venom identification, quality control, and standardization of the product
P-Element Homing Is Facilitated by engrailed Polycomb-Group Response Elements in Drosophila melanogaster
P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing
Improved Measurements of Partial Rate Asymmetry in B -> h h Decays
We report improved measurements of the partial rate asymmetry (Acp) in B -> h
h decays with 140fb^-1 of data collected with the Belle detector at the KEKB
e+e- collider. Here h stands for a charged or neutral pion or kaon and in total
five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s
pi0. The flavor of the last decay mode is determined from the accompanying B
meson. Using a data sample 4.7 times larger than that of our previous
measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero.
Results for other decay modes are also presented.Comment: 9 pages, 1 figur
Evidence for B- -> tau- nu_bar with a Semileptonic Tagging Method
We present a measurement of the decay B- -> tau- nu_bar using a data sample
containing 657 million BB_bar pairs collected at the Upsilon(4S) resonance with
the Belle detector at the KEKB asymmetric-energy e+e- collider. A sample of
BB_bar pairs are tagged by reconstructing one B meson decaying
semileptonically. We detect the B- -> tau- nu_bar candidate in the recoil. We
obtain a signal with a significance of 3.6 standard deviations including
systematic uncertainties, and measure the branching fraction to be Br(B- ->
tau- nu_bar) = [1.54+0.38-0.37(stat)+0.29-0.31(syst)]*10^-4. This result
confirms the evidence for B- -> tau- nu_bar obtained in a previous Belle
measurement that used a hadronic B tagging method.Comment: 7 pages, 3 figures, corrected references, to appear in PRD-R
Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications
Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications
- …