15,122 research outputs found

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    Global NLO Analysis of Nuclear Parton Distribution Functions

    Full text link
    Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F_2^A/F_2^{A'} and Drell-Yan cross section ratios \sigma_{DY}^A/\sigma_{DY}^{A'}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of \alpha_s. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.Comment: 3 pages, LaTeX, 4 eps files, to be published in the AIP proceedings of the 9th International Workshop on Neutrino Factories, Superbeams and Betabeams (NuFact07), Okayama, Japan, August 6 - 11, 2007. A code for calculating our nuclear parton distribution functions and their uncertainties can be obtained from http://research.kek.jp/people/kumanos/nuclp.htm

    Statistical algorithm for nonuniformity correction in focal-plane arrays

    Get PDF
    A statistical algorithm has been developed to compensate for the fixed-pattern noise associated with spatial nonuniformity and temporal drift in the response of focal-plane array infrared imaging systems. The algorithm uses initial scene data to generate initial estimates of the gain, the offset, and the variance of the additive electronic noise of each detector element. The algorithm then updates these parameters by use of subsequent frames and uses the updated parameters to restore the true image by use of a least-mean-square error finite-impulse-response filter. The algorithm is applied to infrared data, and the restored images compare favorably with those restored by use of a multiple-point calibration technique

    Scene-based nonuniformity correction with video sequences and registration

    Get PDF
    We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity

    Field Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Get PDF
    The multiple reentrant quantum phase transitions in the S=1/2S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with the interchain mean field approximation. It is assumed that the odd-th bond is antiferromagnetic with strength JJ and even-th bond can take the values {\JS} and {\JW} ({\JS} > J > {\JW} > 0) randomly with probability pp and 1p1-p, respectively. The pure version (p=0p=0 and p=1p=1) of this model has a spin gap but exhibits a field induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0<p<10 < p < 1, the antiferromagnetism is induced by randomness at small field region where the ground state is disordered due to the spin gap in the pure case. At the same time, this model exhibits randomness induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between the transverse antiferromagnetic phases and disordered plateau phases with the increase of the magnetic field for moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and the jumps between them, It is also found that the antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.Comment: 5 pages, 8 figure

    MANX: A 6D Ionization-Cooling Experiment

    Full text link
    Six-dimensional ionization cooling of muons is essential for muon colliders and possibly beneficial for neutrino factories. An experiment to demonstrate six-dimensional ionization cooling using practical apparatus is presented. It exploits recent innovative ideas that may lead to six-dimensional muon-cooling channels with emittance reduction approaching that needed for high-luminosity muon colliders.Comment: 3 pages, 4 figures, to appear in Proceedings of the 9th International Workshop on Neutrino Factories, Superbeams, and Betabeams (NuFact07), August 6-11, 2007, Okayama University, Japa
    corecore